Advertisement

Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing

  • Parosh Aziz Abdulla
  • Yu-Fang Chen
  • Lorenzo Clemente
  • Lukáš Holík
  • Chih-Duo Hong
  • Richard Mayr
  • Tomáš Vojnar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6174)

Abstract

There are two main classes of methods for checking universality and language inclusion of Büchi-automata: Rank-based methods and Ramsey-based methods. While rank-based methods have a better worst-case complexity, Ramsey-based methods have been shown to be quite competitive in practice [10,9]. It was shown in [10] (for universality checking) that a simple subsumption technique, which avoids exploration of certain cases, greatly improves the performance of the Ramsey-based method. Here, we present a much more general subsumption technique for the Ramsey-based method, which is based on using simulation preorder on the states of the Büchi-automata. This technique applies to both universality and inclusion checking, yielding a substantial performance gain over the previous simple subsumption approach of [10].

Keywords

Alphabet Size Timeout Period Subsumption Relation Inclusion Test Mutual Exclusion Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Vojnar, T.: Simulation Subsumption in Ramsey-based Büchi Automata Universality and Inclusion Testing. Technical report FIT-TR-2010-02, FIT BUT (2010), http://www.fit.vutbr.cz/~holik/pub/FIT-TR-2010-002.pdf
  2. 2.
    Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When Simulation Meets Antichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Abdulla, P.A., Chen, Y.-F., Holík, L., Vojnar, T.: Mediating for Reduction (On Minimizing Alternating Büchi Automata). In: Proc. of FSTTCS’09, Leibniz International Proceedings in Informatics, vol. 4 (2009)Google Scholar
  4. 4.
    Büchi, J.R.: On a Decision Method in Restricted Second Order Arithmetic. In: Proc. of Int. Con. on Logic, Method, and Phil. of Science (1962)Google Scholar
  5. 5.
    Doyen, L., Raskin, J.-F.: Improved Algorithms for the Automata-based Approach to Model Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Etessami, K.: A Hierarchy of Polynomial-Time Computable Simulations for Automata. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 131. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Etessami, K., Wilke, T., Schuller, R.A.: Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata. SIAM J. Comp. 34(5) (2005)Google Scholar
  8. 8.
    Fogarty, S.: Büchi Containment and Size-Change Termination. Master’s Thesis, Rice University (2008)Google Scholar
  9. 9.
    Fogarty, S., Vardi, M.Y.: Büchi Complementation and Size-Change Termination. In: Proc. of TACAS’09. LNCS, vol. 5505. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing Simulations on Finite and Infinite Graphs. In: Proc. FOCS’95. IEEE CS, Los Alamitos (1995)Google Scholar
  12. 12.
    Holík, L., Šimáček, J.: Optimizing an LTS-Simulation Algorithm. In: Proc. of MEMICS’09 (2009)Google Scholar
  13. 13.
    Jones, N.D., Lee, C.S., Ben-Amram, A.M.: The Size-Change Principle for Program Termination. In: Proc. of POPL’01. ACM SIGPLAN (2001)Google Scholar
  14. 14.
    Kupferman, O., Vardi, M.Y.: Weak Alternating Automata Are Not That Weak. ACM Transactions on Computational Logic 2(2), 408–429 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The Complementation Problem for Büchi Automata with Applications to Temporal Logic. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  17. 17.
    Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Tabakov, D., Vardi, M.Y.: Model Checking Büchi Specifications. In: Proc. of LATA’07 (2007)Google Scholar
  19. 19.
    Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Wu, K.-N., Chan, W.-C.: GOAL: A Graphical Tool for Manipulating Büchi Automata and Temporal Formulae. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    http://iis.sinica.edu.tw/FMLAB/CAV2010 (capitalize “FMLAB” and “CAV 2010”)

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Yu-Fang Chen
    • 2
  • Lorenzo Clemente
    • 3
  • Lukáš Holík
    • 4
  • Chih-Duo Hong
    • 2
  • Richard Mayr
    • 3
  • Tomáš Vojnar
    • 4
  1. 1.Uppsala University 
  2. 2.Academia Sinica 
  3. 3.University of Edinburgh 
  4. 4.Brno University of Technology 

Personalised recommendations