Multiple Layer Reversible Images Watermarking Using Enhancement of Difference Expansion Techniques

  • Shahidan M. Abdullah
  • Azizah A. Manaf
Part of the Communications in Computer and Information Science book series (CCIS, volume 87)


This paper proposes a high capacity reversible image watermarking scheme based on enhancement of difference-expansion method. Reversible watermarking enables the embedding of useful information in a host signal without any loss of host information. We propose an enhancement of Difference Expansion technique whereby we can embed recursively into multiple layer of payload for grey scale and also RGB color scale, hence it increase capacity much better. The proposed technique improves the distortion performance at low embedding capacities and mitigates the capacity control problem. We also propose a reversible data-embedding technique with blind detection of watermark. This new technique exploits the selection of optimum block size to implement the algorithm. The experimental results for many standard test images show that multilevel of embedding increase the capacity when compared to normal difference expansion. There is also a significant improvement in the quality (PSNR) of the watermarked image, especially at moderate embedding capacities.


Multilayer embedding difference expansion blind detection reversible watermarking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yaqub, M.K.: Reversible Watermarking Using Modified Difference Expansion. International Journal of Computing & Information Sciences 4(3), 134–142 (2006)Google Scholar
  2. 2.
    Alattar, A.M.: Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-LSB data embedding. IEEE Trans. Image Process. 14(2), 253–266 (2005)CrossRefGoogle Scholar
  4. 4.
    Tian, J.: Reversible watermarking using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  5. 5.
    De Vleeschouwer, C., Delaigle, J.E., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans. Multimedia 5(1), 97–105 (2003)CrossRefGoogle Scholar
  6. 6.
    Dittmann, J., Benedens, O.: Invertible authentication for 3D-meshes. In: Proc. SPIE, vol. 5020, pp. 653–664 (2003)Google Scholar
  7. 7.
    Fridrich, J., Goljan, M., Du., R.: Lossless data embedding—New paradigm in digital watermarking. EURASIP J. Appl. Signal Process. 2, 185–196 (2003)Google Scholar
  8. 8.
    Fridrich, J., Du., R.: Lossless authentication of MPEG-2 video. In: Proc. IEEE Conf. Image Processing, September 2002, vol. 2, pp. 893–896 (2002)Google Scholar
  9. 9.
    Honsinger, C.W., Jones, P., Rabbani, M., Stoffel, J.C.: Lossless recovery of an original image containing embedded data, U.S. Patent 6 278 791 (2001)Google Scholar
  10. 10.
    Mintzer, F., Lotspiech, J.: Safeguarding digital library contents and users, Digital watermarking. D-Lib. Mag. (December 1997)Google Scholar
  11. 11.
    Kalker, A.A.C.M., Willems, F.M.J.: Capacity bounds and constructions for reversible data-hiding. In: Proc. 14th Int. Conf. Digital Signal Processing, July 2002, vol. 1, pp. 71–76 (2002)Google Scholar
  12. 12.
    Kalker, A.A.C.M., Willems, F.M.J.: Reversible embedding methods. Presented at the 40th Annu. Allerton Conf. Communication and Control (2002)Google Scholar
  13. 13.
    Kamstra, L., Heijmans, H.: Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans. Image Process.. 14(12), 2082–2090 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kamstra, L., Heijmans, H.: Wavelet techniques for reversible data embedding into images. Centrum voor Wiskunde en Informatica Rep. (2004)Google Scholar
  15. 15.
    Maas, D., Kalker, T., Willems, F.M.J.: A code construction for recursive reversible data-hiding. In: Proc. ACM Workshop Multimedia, Juan-les-Pins, France, December 2002, pp. 15–18 (2002)Google Scholar
  16. 16.
    Ni, Z., Shi, Y., Ansari, N., Wei, S.: Reversible data hiding. In: Proc. IEEE Int. Symp. Circuits and Systems, May 2003, vol. 2, pp. 912–915 (2003)Google Scholar
  17. 17.
    Thodi, D.M., Rodriquez, J.J.: Prediction-error-based reversible watermarking. In: Proc. IEEE Conf. Image Processing, October 2004, pp. 1549–1552 (2004)Google Scholar
  18. 18.
    Reversible watermarking by prediction-error expansion. In: Proc. IEEE Southwest Symp. Image Analysis and Interpretation, pp. 28–30 (2004)Google Scholar
  19. 19.
    Van Leest, A., Van der Veen, M., Bruekers, F.: Reversible image watermarking. In: Proc. IEEE Conf. Image Processing, September 2003, vol. 3, pp. 731–734 (2003)Google Scholar
  20. 20.
    Lee, S., Chang, D.: Reversible Image watermarking based on integer to integer wavelet transform. IEEE, Los Alamitos (May 2007)Google Scholar
  21. 21.
    Xuan, G., Zhu, J., Chen, J., Shi, Y.Q., Ni, Z., Su, W.: Distortionless data hiding based on integer wavelet transform. IEE Electron. Lett. 38(25), 1646–1648 (2002)CrossRefGoogle Scholar
  22. 22.
    Kurshid Jinna1, S., Ganesan2, L.: Lossless Image Watermarking using Lifting Wavelet Transform. International Journal of Recent Trends in Engineering 2(1) (November 2009)Google Scholar
  23. 23.
    Zhao, Y.: Dual Domain Semi-Fragile watermarking for Image Authentication. Master Thesis, University of Toronto (2003)Google Scholar
  24. 24.
    Zeki, A.M., Manaf, A.A.: Digital watermarking based on ISB, Phd Thesis, University Technology Malaysia (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shahidan M. Abdullah
    • 1
  • Azizah A. Manaf
    • 1
  1. 1.University Technology Malaysia 

Personalised recommendations