Recognition of Higher-Order Relations among Features in Textual Cases Using Random Indexing

  • Pinar Öztürk
  • Rajendra Prasath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6176)


We envisage retrieval in textual case-based reasoning (TCBR) as an instance of abductive reasoning. The two main subtasks underlying abductive reasoning are ‘hypotheses generation’ where plausible case hypotheses are generated, and ‘hypothesis testing’ where the best hypothesis is selected among these in sequel. The central idea behind the presented two-stage retrieval model for TCBR is that recall relies on lexical equality of features in the cases while recognition requires mining higher order semantic relations among features. The proposed account of recognition relies on a special representation called random indexing, and applies a method that simultaneously performs an implicit dimension reduction and discovers higher order relations among features based on their meanings that can be learned incrementally. Hence, similarity assessment in recall is computationally less expensive and is applied on the whole case base while in recognition a computationally more expensive method is employed but only on the case hypotheses pool generated by recall. It is shown that the two-stage model gives promising results.


Textual case based reasoning random indexing dimension reduction higher-level relations distributed representations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A.: Knowledge-intensive case-based reasoning in creek. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 1–15. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case retrieval reuse net (cr2n): An architecture for reuse of textual solutions. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 14–28. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Baddeley, A.: Domains of recollection. Psychological Review 86(6), 709–729 (1982)Google Scholar
  4. 4.
    Baddeley, A.: Human memory. Lawrence Erlbaum, Mahwah (1990)Google Scholar
  5. 5.
    Brüninghaus, S., Ashley, K.D.: The role of information extraction for textual CBR. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 74–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Brüninghaus, S., Ashley, K.D.: Progress in textual case-based reasoning: predicting the outcome of legal cases from text. In: AAAI 2006: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 1577–1580. AAAI Press, Menlo Park (2006)Google Scholar
  7. 7.
    Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expansion using smart: Trec 3. In: TREC (1994)Google Scholar
  8. 8.
    Chakraborti, S., Wiratunga, N., Lothian, R., Watt, S.: Acquiring word similarities with higher order association mining. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 61–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  10. 10.
    Díaz-Agudo, B., González-Calero, P.A.: Cbronto: A task/method ontology for CBR. In: Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, pp. 101–105. AAAI Press, Menlo Park (2002)Google Scholar
  11. 11.
    Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7(2), 155–170 (1983)CrossRefGoogle Scholar
  12. 12.
    Gentner, D., Forbus, K.D.: Mac/fac: A model of similarity-based retrieval. Cognitive Science 19, 141–205 (1991)Google Scholar
  13. 13.
    Habib, R., Nyberg, L.: Neural correlates of availability and accessibility in memory. Cerebral Cortex 18, 1720–1726 (2008)CrossRefGoogle Scholar
  14. 14.
    Harman, G.H.: The inference to the best explanation. The Philosophical Review 74, 88–95 (1965)CrossRefGoogle Scholar
  15. 15.
    Harman, G.H.: Enumerative induction as inference to the best explanation. Journal of Philosophy 65, 139–149 (1968)Google Scholar
  16. 16.
    Johnson, W., Lindenstrauss, L.: Extensions of Lipschitz maps into a Hilbert space. Contemporary Mathematics 26, 189–206 (1984)MATHMathSciNetGoogle Scholar
  17. 17.
    Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of the 22nd Annual Conference of the Cognitive Science Society, pp. 103–106. Erlbaum, Mahwah (2000)Google Scholar
  18. 18.
    Kintsch, W., Miller, J.R., Polson, P.G.: Methods and Tactics in Cognitive Science. L. Erlbaum Associates Inc., Hillsdale (1984)Google Scholar
  19. 19.
    Lenz, M., Burkhard, H.D.: Case retrieval nets: Basic ideas and extensions. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 227–239. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    McLaren, B.M., Ashley, K.D.: Case representation, acquisition, and retrieval in sirocco. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 248–262. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Öztürk, P., Aamodt, A.: A context model for knowledge-intensive case-based reasoning. Int. J. Hum.-Comput. Stud. 48(3), 331–355 (1998)CrossRefGoogle Scholar
  22. 22.
    Peirce, C.S.: Collected Papers of Charles Sanders Peirce. In: Hartshorne, C., Weiss, P., Burks, A. (eds.), vol. 8. Harvard University Press, Cambridge (1958)Google Scholar
  23. 23.
    Raghunandan, M.A., Wiratunga, N., Chakraborti, S., Massie, S., Khemani, D.: Evaluation measures for TCBR systems. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 444–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Sahlgren, M.: An introduction to random indexing. In: Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE 2005 (2005)Google Scholar
  25. 25.
    Sahlgren, M.: Vector-based semantic analysis: Representing word meanings based on random labels. In: ESSLI Workshop on Semantic Knowledge Acquistion and Categorization. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  26. 26.
    Singhal, A., Salton, G., Mitra, M., Buckley, C.: Document length normalization. Inf. Process. Manage. 32(5), 619–633 (1996)CrossRefGoogle Scholar
  27. 27.
    Tulving, E., Osler, S.: Effectiveness of retrieval cues in memory for words. Journal of Experimental Psychology 77, 593–601 (1968)CrossRefGoogle Scholar
  28. 28.
    Tulving, E., Pearlstone, Z.: Availability versus accessibility of information in memory for words. Journal of Verbal Learning and Verbal Behavior 5, 381–391 (1966)CrossRefGoogle Scholar
  29. 29.
    Wiratunga, N., Lothian, R., Massie, S.: Unsupervised feature selection for text data. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 340–354. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pinar Öztürk
    • 1
  • Rajendra Prasath
    • 1
  1. 1.Department of Computer and Information Science (IDI)Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations