CBTV: Visualising Case Bases for Similarity Measure Design and Selection

  • Brian Mac Namee
  • Sarah Jane Delany
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6176)


In CBR the design and selection of similarity measures is paramount. Selection can benefit from the use of exploratory visualisation-based techniques in parallel with techniques such as cross-validation accuracy comparison. In this paper we present the Case Base Topology Viewer (CBTV) which allows the application of different similarity measures to a case base to be visualised so that system designers can explore the case base and the associated decision boundary space. We show, using a range of datasets and similarity measure types, how the idiosyncrasies of particular similarity measures can be illustrated and compared in CBTV allowing CBR system designers to make more informed choices.


Similarity Measure Case Base Cosine Similarity Normalize Compression Distance High Dimensional Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press/Addison-Wesley (1999)Google Scholar
  2. 2.
    Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve retrieval in CBR. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Cheng, W., Hüllermeier, E.: Learning similarity functions from qualitative feedback. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 120–134. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Coyle, L., Cunningham, P.: Improving recommendation ranking by learning personal feature weights. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 560–572. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning. IEEE Transactions on Knowledge and Data Engineering 21, 1532–1543 (2008)CrossRefGoogle Scholar
  6. 6.
    Delany, S.J., Bridge, D.: Textual case-based reasoning for spam filtering: A comparison of feature-based and feature-free approaches. Artificial Intelligence Review 26(1-2), 75–87 (2006)CrossRefGoogle Scholar
  7. 7.
    Delany, S.J., Cunningham, P., Coyle, L.: An assessment of case-based reasoning for spam filtering. Artificial Intelligence Review Journal 24(3-4), 359–378 (2005)CrossRefGoogle Scholar
  8. 8.
    Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation oriented retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 157–168. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Dubitzky, W., Azuaje, F.J.: A genetic algorithm and growing cell structure approach to learning case retrievel structures. In: Soft computing in Case Based Reasoning, pp. 115–146 (2001)Google Scholar
  10. 10.
    Eades, P.: A heuristic for graph drawing. Congressus Nutnerantiunt 42, 149–160 (1984)MathSciNetGoogle Scholar
  11. 11.
    Falkman, G.: The use of a uniform declarative model in 3D visualisation for case-based reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 103–117. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Huang, M.L., Eades, P., Lai, W.: On-line visualization and navigation of the global web structure. Journal of Software Eng. and Knowledge Eng. 13(1), 27–52 (2003)CrossRefGoogle Scholar
  13. 13.
    Jarmulak, J., Craw, S., Crowe, R.: Genetic algorithms to optimise cbr retrieval. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 136–147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Kontkanen, P., Lahtinen, J., Myllymäki, P., Silander, T., Tirri, H.: Supervised model-based visualization of high-dimensional data. Intelligent Data Analysis 4(3-4), 213–227 (2000)zbMATHGoogle Scholar
  15. 15.
    Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. In: Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 863–872 (2003)Google Scholar
  16. 16.
    Liao, T.W., Zhang, Z., Mount, C.: Similarity measures for retrieval in case-based reasoning systems. Applied Artificial Intelligence 12(4), 267–288 (1998)CrossRefGoogle Scholar
  17. 17.
    Maesschalck, R.D., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemometrics and Intelligent Laboratory Systems 50(1), 1–18 (2000), CrossRefGoogle Scholar
  18. 18.
    Massie, S., Craw, S., Wiratunga, N.: Visualisation of case-base reasoning for explanation. In: Procs. ICCBR 2004 Workshop on Long-Lived CBR Systems, pp. 135–144 (2004)Google Scholar
  19. 19.
    McArdle, G., Wilson, D.C.: Visualising case-base usage. In: Procs. of ICCBR 2003 Workshop on Long-Lived CBR Systems (2003)Google Scholar
  20. 20.
    McKenna, E., Smyth, B.: An interactive visualisation tool for case-based reasoners. Applied Intelligence 14(1), 95–114 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Núñez, H., Sànchez-Marrè, M., Cortés, U., Comas, J., Martínez, M., Rodríguez-Roda, I., Poch, M.: A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situations. Environmental Modelling and Software 19(9), 809–819 (2004)CrossRefGoogle Scholar
  22. 22.
    Osborne, H., Bridge, D.: Similarity metrics: A formal unification of cardinal and non-cardinal similarity measures. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS (LNAI), vol. 1266, pp. 235–244. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Ricci, F., Avesani, P.: Learning a local similarity metric for case-based reasoning. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS (LNAI), vol. 1010, pp. 301–312. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. 24.
    Smyth, B., Mullins, M., McKenna, E.: Picture perfect: Visualisation techniques for case-based reasoning. In: Procs of ECAI 2000, pp. 65–72 (2000)Google Scholar
  25. 25.
    Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 537–551. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Street, W., Wolberg, W., Mangasarian, O.: Nuclear feature extraction for breast tumor diagnosis. In: IS&T/SPIE 1993, pp. 861–870 (1993)Google Scholar
  27. 27.
    Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1-5), 273–314 (1997)CrossRefGoogle Scholar
  28. 28.
    Wilson, D., Martinez, T.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Review 6, 1–34 (1997)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Xiong, N., Funk, P.: Building similarity metrics reflecting utility in case-based reasoning. Journal of Intelligent and Fuzzy Systems 17(4), 407–416 (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Brian Mac Namee
    • 1
  • Sarah Jane Delany
    • 1
  1. 1.DIT AI GroupDublin Institute of TechnologyDublinIreland

Personalised recommendations