Introspective Knowledge Revision in Textual Case-Based Reasoning

  • Karthik Jayanthi
  • Sutanu Chakraborti
  • Stewart Massie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6176)

Abstract

The performance of a Textual Case-Based Reasoning system is critically dependent on its underlying model of text similarity, which in turn is dependent on similarity between terms and phrases in the domain. In the absence of human intervention, term similarities are often modelled using co-occurrence statistics, which are fragile unless the corpus is truly representative of the domain. We present the case for introspective revision in TCBR, whereby the system incrementally revises its term similarity knowledge by exploiting conflicts of its representation against an alternate source of knowledge such as category knowledge in classification tasks, or linguistic and background knowledge. The advantage of such revision is that it requires no human intervention. Our experiments on classification knowledge show that revision can lead to substantial gains in classification accuracy, with results competitive to best-in-line text classifiers. We have also presented experimental results over synthetic data to suggest that the idea can be extended to improve case-base alignment in TCBR domains with textual problem and solution descriptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aha, D.W., Muoz-Avila, H.: Introduction: Interactive case-based reasoning. Applied Intelligence 14(1), 7–8 (2001)CrossRefGoogle Scholar
  2. 2.
    Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve retrieval in cbr: A case study in air traffic control. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Chakraborti, S., Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Khemani, D.: Visualizing and evaluating complexity of textual case bases. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 104–119. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chakraborti, S., Lothian, R., Wiratunga, N., Watt, S.: Sprinkling: Supervised latent semantic indexing. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 510–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Diaz-agudo, B., Gonzalez-Calero, P.A.: Abstract formal concept analysis as a support technique for cbr. Knowledge Based Systems 14(3-4), 163–171 (2001)CrossRefGoogle Scholar
  6. 6.
    Lenz, M.: Case Retrieval Nets as a Model for Building Flexible Information Systems. PhD dissertation, Humboldt University Berlin. Faculty of Mathematics and Natural Sciences (1999)Google Scholar
  7. 7.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  8. 8.
    Kontostathis, A., Pottenger, W.M.: Detecting patterns in lsi term-term matrix. In: Proceedings of IEEE ICDM 2002 workshop, pp. 243–248 (2002)Google Scholar
  9. 9.
    Raghunandan, M.A., Chakraborti, S., Khemani, D.: Robust measures of complexity in tcbr. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS (LNAI), vol. 5650, pp. 270–284. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Mitchell, T.: Machine Learning. Mc Graw Hill International (1997)Google Scholar
  11. 11.
    Vapnik, V.N.: Statistical Learning theory. Wiley, Chichester (1998)MATHGoogle Scholar
  12. 12.
    Wiratunga, N., Lothian, R., Chakraborti, S., Koychev, I.: A propositional approach to textual case indexing. In: Proc. of 9th European Conference on Principles and Practice of KDD, pp. 380–391 (2005)Google Scholar
  13. 13.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of Statistics 28(2), 337–407 (1988)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Joachims, T.: Making large-scale svm learning practical. In: Advances in Kernel Methods: Support Vector Learning, pp. 169–184 (1999)Google Scholar
  15. 15.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  16. 16.
    Porter, B.W., Bareiss, R., Holte, R.C.: Concept learning and heuristic classification in weak-theory domains. Artificial Intelligence 45(1-2), 741–758 (1993)Google Scholar
  17. 17.
    Zelkovitz, S., Hirsh, H.: Using lsi for text classification in the presence of background text. In: Finin, T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752, Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Sam, S., Stan, M.: Text classification using wordnet hypernyms. In: Proc. of Workshop on usage of WordNet in NLP systems, pp. 45–51 (1998)Google Scholar
  19. 19.
    Gabrowich, E., Markovith, S.: Computing semantic relatedness using wikipedia based explicit semantic analysis. In: Proc. of 20th International Joint Conference on AI, pp. 1606–1611 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Karthik Jayanthi
    • 1
  • Sutanu Chakraborti
    • 1
  • Stewart Massie
    • 2
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyChennaiIndia
  2. 2.School of ComputingThe Robert Gordon UniversityAberdeenUK

Personalised recommendations