Developing Strategies for the ART Domain

  • Javier Murillo
  • Víctor Muñoz
  • Beatriz López
  • Dídac Busquets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5988)


In this paper we propose the design of an agent for the ART Testbed, a tool created with the goal of objectively evaluate different trust strategies. The agent design includes a trust model and a strategy for decision making. The trust model is based on the three components of trust considered in ART, namely direct, indirect (reputation) and self trust (certainty). It also incorporates a variable time window size based on the available information that allows the agent to easily adapt to possible changes in the environment. The decision-making strategy uses the information provided by the trust model to take the best decisions to achieve the most benefits for the agent. This decision making tackles the exploration versus exploitation problem since the agent has to decide when to interact with the known agents and when to look for new ones. The agent, called Uno2008, competed in and won the Third International ART Testbed Competition held at AAMAS in March 2008.


Competitive multi-agent systems Trust Reputation ART Testbed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ba, S., Whinston, A., Zhang, H.: Building trust in online auction markets through an economic incentive mechanism. Decision Support System 35(3), 273–286 (2003)CrossRefGoogle Scholar
  2. 2.
    Conte, R., Paolucci, M.: Reputation in Artificial Societies: Social Beliefs for Social Order. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  3. 3.
    Costa, A.D., Lucena, C.J.P.: Computing Reputation in the Art Context: Agent Design to Handle Negotiation Challenges. In: Trust in Agent Societies, AAMAS (2008)Google Scholar
  4. 4.
    Fullam, K., Klos, T., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Barber, S., Rosenschein, J., Vercouter, L., Voss, M.: A Specification of the Agent Reputation and Trust (ART) Testbed: Experimentation and Competition for Trust in Agent Societies. In: Proc. of the 4th AAMAS, pp. 512–518 (2005)Google Scholar
  5. 5.
    Fullam, K., Sabater, J., Barber, S.: Toward a testbed for trust and reputation models. Trusting Agents for Trusting Electronic Societies, 95–109 (2005)Google Scholar
  6. 6.
    Gómez, M., Carbó, J., Benac, C.: Honesty and trust revisited: the advantages of being neutral about other’s cognitive models. JAAMAS 15, 313–335 (2007)Google Scholar
  7. 7.
    Kafali, O., Yolum, P.: Trust Strategies for the ART Testbed. In: The Workshop on Trust in Agent Societies at AAMAS 2006, pp. 43–49 (2006)Google Scholar
  8. 8.
    Muñoz, V., Murillo, J.: Agent UNO: Winner in the 2nd Spanish ART competition. Revista Iberoamericana de Inteligencia Artificial 39, 19–27 (2008)Google Scholar
  9. 9.
    Muñoz, V., Murillo, J., López, B., Busquets, D.: Strategies for Exploiting Trust Models in Competitive Multiagent Systems. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 79–90. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Sabater, J.: Trust and Reputation for Agent Societies, Monografies de l’institut d’investigació en intel.ligència artificial, 20, PhD Thesis (2003)Google Scholar
  11. 11.
    Sutton, R., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)Google Scholar
  12. 12.
    Teacy, L., Huynh, T.D., Dash, R.K., Jennings, N.R., Luck, M., Patel, J.: The ART of IAM: The Winning Strategy for the 2006 Competition. In: Proceedings of the 10th International Workshop on Trust in Agent Societies, pp. 102–111 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Javier Murillo
    • 1
  • Víctor Muñoz
    • 1
  • Beatriz López
    • 1
  • Dídac Busquets
    • 1
  1. 1.Institut d’Informàtica i AplicacionsCampus MontiliviSpain

Personalised recommendations