Advertisement

GPU-Accelerated Predicate Evaluation on Column Store

  • Ren Wu
  • Bin Zhang
  • Meichun Hsu
  • Qiming Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6184)

Abstract

Column scan, or predicate evaluation and filtering over a column of data in a database table, is an important primitive for data mining and data warehousing. In this paper, we present our study on accelerating column scan using a massively parallel accelerator. With a design that takes full advantage of the characteristics of the memory hierarchy and parallel execution in such processors, we have achieved very attractive speedup performance that significantly exceeds previously reported results, making the use of such an accelerator for this type of primitives much more viable. Running on a general purpose graphic processor unit (GPGPU), NVidia GTX 280 GPU, the GPU version is about 5-6 times faster than an implementation on an eight-core CPU, or over 40 times faster than that on a single-core CPU.

Keywords

Parallel Algorithm Scan Predicate evaluation Graphics Processor GPGPU Accelerator Multi-core Many-core Data parallelism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chatterjee, S., et al.: Scan primitives for vector computers. In: Proceedings of the 1990 ACM/IEEE conference on Supercomputing, pp. 666–675 (1990)Google Scholar
  2. 2.
    Fang, R., et al.: GPUQP: Query co-processing using graphics processors. In: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pp. 1061–1063 (2007)Google Scholar
  3. 3.
    Govindaraju, N.K., et al.: Fast computation of database operations using graphics processors. In: Proceedings of the 2004 ACM SIGMOD international conference (2004)Google Scholar
  4. 4.
    Govindaraju, N.K., et al.: Fast and approximate stream mining of quantiles and frequencies using graphics processors. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp. 611–622 (2005)Google Scholar
  5. 5.
    Harris, M., et al.: Parallel prefix sum (scan) with cuda. In: Nguyen, H. (ed.) GPU Gems 3. Addison Wesley, Reading (2007)Google Scholar
  6. 6.
    He, B., et al.: Mars: A mapreduce framework on graphics processors. In: IEEE International Conference on Parallel Architecture and Compilation Techniques, pp. 1111–1120 (2008)Google Scholar
  7. 7.
    He, B., et al.: Relational joins on graphics processors. In: Proceedings of the 2008 ACM SIGMOD international conference (2008)Google Scholar
  8. 8.
  9. 9.
    Intel® 64 and IA-32 Architectures Software Developer’s Manuals (2008), http://www.intel.com/products/processor/manuals/
  10. 10.
  11. 11.
    Weyerhaeuser, et al.: Exploiting Graphic Card Processor Technology to Accelerate Data Mining Queries in SAP NetWeaver BIA. In: 2008 IEEE International Conference on Data Mining Workshops (2008)Google Scholar
  12. 12.
    Volkov, V., Demmel, J.: LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs. Technical Report No. UCB/EECS-2008-49 (2008)Google Scholar
  13. 13.
    Wu, R., Zhang, B., Hsu, M.: GPU-Accelerated Large Scale Analytics. HP Labs Technical Report, HPL-2009-38Google Scholar
  14. 14.
    Wu, R., Zhang, B., Hsu, M.: Clustering Billions of Data Points Using GPUs. In: ACM UCHPC 2009: Second Workshop on UnConventional High Performance Computing, Italy (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ren Wu
    • 1
  • Bin Zhang
    • 1
  • Meichun Hsu
    • 1
  • Qiming Chen
    • 1
  1. 1.HP Labs, Hewlett-Packard CompanyPalo AltoUSA

Personalised recommendations