Monotonicity Inference for Higher-Order Formulas

  • Jasmin Christian Blanchette
  • Alexander Krauss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

Formulas are often monotonic in the sense that if the formula is satisfiable for given domains of discourse, it is also satisfiable for all larger domains. Monotonicity is undecidable in general, but we devised two calculi that infer it in many cases for higher-order logic. The stronger calculus has been implemented in Isabelle’s model finder Nitpick, where it is used to prune the search space, leading to dramatic speed improvements for formulas involving many atomic types.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Applied Logic, vol. 27. Springer, Heidelberg (2002)MATHGoogle Scholar
  2. 2.
    Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L. (eds.) ITP-10. LNCS. Springer, Heidelberg (to appear, 2010)Google Scholar
  4. 4.
    Claessen, K.: Private communication (2009)Google Scholar
  5. 5.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: MODEL (2003)Google Scholar
  6. 6.
    Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  7. 7.
    Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge (2006)Google Scholar
  9. 9.
    Jackson, D., Shlyakhter, I., Sridharan, M.: A micromodularity mechanism. In: FSE/ESEC 2001, pp. 62–73 (2001)Google Scholar
  10. 10.
    Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Gall, H.C. (ed.) ESEC/FSE 2005 (2005)Google Scholar
  11. 11.
    McCune, W.: A Davis–Putnam program and its application to finite first-order model search: Quasigroup existence problems. Technical report, ANL (1994)Google Scholar
  12. 12.
    Momtahan, L.: Towards a small model theorem for data independent systems in Alloy. ENTCS 128(6), 37–52 (2005)Google Scholar
  13. 13.
    Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  15. 15.
    Pnueli, A., Rodeh, Y., Strichman, O., Siegel, M.: The small model property: How small can it be? Inf. Comput. 178(1), 279–293 (2002)MATHMathSciNetGoogle Scholar
  16. 16.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2008)Google Scholar
  19. 19.
    Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Kaufmann, M. (ed.) IJCAI 95, vol. 1, pp. 298–303 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jasmin Christian Blanchette
    • 1
  • Alexander Krauss
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations