Termination Tools in Ordered Completion

  • Sarah Winkler
  • Aart Middeldorp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)


Ordered completion is one of the most frequently used calculi in equational theorem proving. The performance of an ordered completion run strongly depends on the reduction order supplied as input. This paper describes how termination tools can replace fixed reduction orders in ordered completion procedures, thus allowing for a novel degree of automation. Our method can be combined with the multi-completion approach proposed by Kondo and Kurihara. We present experimental results obtained with our ordered completion tool omkb TT for both ordered completion and equational theorem proving.


Inference System Inference Rule Theorem Prove Critical Pair Ground Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. Journal of the ACM 41(2), 236–276 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques of Progress in Theoretical Computer Science, vol. 2, pp. 1–30. Academic Press, London (1989)Google Scholar
  3. 3.
    Bofill, M., Godoy, G., Nieuwenhuis, R., Rubio, A.: Paramodulation and Knuth–Bendix completion with nontotal and nonmonotonic orderings. Journal of Automated Reasoning 30(1), 99–120 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hillenbrand, T., Löchner, B.: The next Waldmeister loop. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 486–500. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. University of Illinois, US (1980) (unpublished manuscript)Google Scholar
  7. 7.
    Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)Google Scholar
  8. 8.
    Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Kurihara, M., Kondo, H.: Completion for multiple reduction orderings. Journal of Automated Reasoning 23(1), 25–42 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lankford, D.: On proving term rewrite systems are noetherian. Technical Report MTP-3, Louisiana Technical University (1979)Google Scholar
  11. 11.
    Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termination tools (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 306–312. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Constraint-based multi-completion procedures for term rewriting systems. IEICE Transactions on Electronics, Information and Communication Engineers E92-D(2), 220–234 (2009)CrossRefGoogle Scholar
  13. 13.
    Schulz, S.: The E Equational Theorem Prover (2009),
  14. 14.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of Automated Reasoning 43(4), 337–362 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  16. 16.
    Wehrman, I., Stump, A., Westbrook, E.M.: Slothrop: Knuth-Bendix completion with a modern termination checker. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 287–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Optimizing mkbTT (System description). In: Lynch, C. (ed.) Proc. 21st RTA. LIPIcs (to appear, 2010)Google Scholar
  18. 18.
    Zantema, H.: Total termination of term rewriting is undecidable. Journal of Symbolic Computation 20(1), 43–60 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sarah Winkler
    • 1
  • Aart Middeldorp
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations