On Hierarchical Reasoning in Combinations of Theories

  • Carsten Ihlemann
  • Viorica Sofronie-Stokkermans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

In this paper we study theory combinations over non-disjoint signatures in which hierarchical and modular reasoning is possible. We use a notion of locality of a theory extension parameterized by a closure operator on ground terms. We give criteria for recognizing these types of theory extensions. We then show that combinations of extensions of theories which are local in this extended sense also have a locality property and hence allow modular and hierarchical reasoning. We thus obtain parameterized decidability and complexity results for many (combinations of) theories important in verification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Tinelli, C.: Deciding the word problem in the union of equational theories. Information and Computation 178(2), 346–390 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered resolution. Journal of the ACM 48(1), 70–109 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bradley, A.R., Manna, Z., Sipma, H.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Burris, S.: Polynomial time uniform word problems. Mathematical Logic Quarterly 41, 173–182 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chang, C.C., Keisler, J.J.: Model Theory. North-Holland, Amsterdam (1990)MATHGoogle Scholar
  6. 6.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Harcourt Academic Press, London (2002)Google Scholar
  7. 7.
    Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time decidability of uniform word problems. In: Logic in Computer Science, LICS’01, pp. 81–92. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  8. 8.
    Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with weak equality. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 168–182. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Givan, R., McAllester, D.A.: New results on local inference relations. In: Nebel, B., Rich, C., Swartout, W.R. (eds.) Knowledge Representation and Reasoning, KR’92, pp. 403–412 (1992)Google Scholar
  11. 11.
    Givan, R., McAllester, D.A.: Polynomial-time computation via local inference relations. ACM Transactions on Comp. Logic 3(4), 521–541 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  13. 13.
    Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 131–139. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Jacobs, S.: Hierarchic Decision Procedures for Verification. PhD. Thesis, Univ. des Saarlandes (2010)Google Scholar
  16. 16.
    Mal’cev, A.I.: Axiomatizable classes of locally free algebras of various types. The Metamathematics of Algebraic Systems. In: Collected Papers: 1936-1967, Studies in Logic and the Foundation of Mathematics, ch. 23, vol. 66. North-Holland, Amsterdam (1971)Google Scholar
  17. 17.
    McAllester, D.A.: Automatic recognition of tractability in inference relations. Journal of the ACM 40(2), 284–303 (1993)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)MATHCrossRefGoogle Scholar
  20. 20.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du Premier Congrès des Mathématiciens des Pays Slaves, 92–101 (1929)Google Scholar
  21. 21.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Sofronie-Stokkermans, V.: On combinations of local theory extensions. In: Proceedings of the Workshop on Programming Logics in memory of Harald Ganzinger, WPLHG’05 (to appear, 2005), http://arxiv.org/abs/0810.2653
  23. 23.
    Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories: The case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local extensions of ordered structures. Journal of Multiple-Valued Logics and Soft Computing 13(4-6), 397–414 (2007)MATHMathSciNetGoogle Scholar
  25. 25.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tinelli, C., Zarba, C.: Combining non-stably infinite theories. Journal of Automated Reasoning 34(3), 209–238 (2005)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1/2), 3–27 (1988)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Wheeler, W.H.: Model-companions and definability in existentially complete structures. Israel Journal of Mathematics 25, 305–330 (1976)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carsten Ihlemann
    • 1
  • Viorica Sofronie-Stokkermans
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations