Advertisement

On the Saturation of YAGO

  • Martin Suda
  • Christoph Weidenbach
  • Patrick Wischnewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

YAGO is an automatically generated ontology out of Wikipedia and WordNet. It is eventually represented in a proprietary flat text file format and a core comprises 10 million facts and formulas. We present a translation of YAGO into the Bernays-Schönfinkel Horn class with equality. A new variant of the superposition calculus is sound, complete and terminating for this class. Together with extended term indexing data structures the new calculus is implemented in Spass-YAGO. YAGO can be finitely saturated by Spass-YAGO in about 1 hour. We have found 49 inconsistencies in the original generated ontology which we have fixed. Spass-YAGO can then prove non-trivial conjectures with respect to the resulting saturated and consistent clause set of about 1.4 GB in less than one second.

Keywords

Inference Rule Function Symbol Horn Clause Ground Instance Context Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. Journal of the ACM (JACM) 45(6), 1007–1049 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 242–256. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Horrocks, I., Voronkov, A.: Reasoning support for expressive ontology languages using a theorem prover. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 201–218. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964. Elsevier/MIT Press (2001)Google Scholar
  7. 7.
    Schulz, S., Bonacina, M.P.: On Handling Distinct Objects in the Superposition Calculus. In: Konev, B., Schulz, S. (eds.) Proc. of the 5th International Workshop on the Implementation of Logics, Montevideo, Uruguay, pp. 66–77 (2005)Google Scholar
  8. 8.
    Rao, J., Ross, K.A.: Making B\(^{\mbox{+}}\)-trees cache conscious in main memory. In: ACM SIGMOD International Conference on Management of Data, pp. 475–486 (2000)Google Scholar
  9. 9.
    Schulz, S.: E - a brainiac theorem prover. AI Communication 15(2-3), 111–126 (2002)MATHGoogle Scholar
  10. 10.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: 16th international World Wide Web conference (WWW 2007), Banff, Canada, pp. 697–706. ACM Press, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from Wikipedia and WordNet. J. Web Sem. 6(3), 203–217 (2008)Google Scholar
  12. 12.
    Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.: External sources of axioms in automated theorem proving. In: Mertsching, B., Hund, M., Aziz, M.Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 281–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO. Research Report MPI-I-2010-RG1-001, Max-Planck-Institut für Informatik, Saarbrücken (2010)Google Scholar
  14. 14.
    Sutcliffe, G.: The 4th IJCAR Automated Theorem Proving System Competition - CASC-J4. AI Communication 22(1), 59–72 (2009)Google Scholar
  15. 15.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 27, vol. 2, pp. 1965–2012. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  16. 16.
    Weidenbach, C., Dimova, D., Fietzke, A., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Suda
    • 1
  • Christoph Weidenbach
    • 1
  • Patrick Wischnewski
    • 1
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany

Personalised recommendations