Advertisement

A Decision Procedure for CTL* Based on Tableaux and Automata

  • Oliver Friedmann
  • Markus Latte
  • Martin Lange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

We present a decision procedure for the full branching-time logic CTL* which is based on tableaux with global conditions on infinite branches. These conditions can be checked using automata-theoretic machinery. The decision procedure then consists of a doubly exponential reduction to the problem of solving a parity game. This has advantages over existing decision procedures for CTL*, in particular the automata-theoretic ones: the underlying tableaux only work on subformulas of the input formula. The relationship between the structure of such tableaux and the input formula is given by very intuitive tableau rules. Furthermore, runtime experiments with an implementation of this procedure in the MLSolver tool show the practicality of this approach within the limits of the problem’s computational complexity of being 2EXPTIME-complete.

Keywords

Decision Procedure Proof System Winning Strategy State Formula Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emerson, E., Jutla, C.: Tree automata, μ-calculus and determinacy. In: Proc. 32nd Symp. on Foundations of Computer Science, San Juan, pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  2. 2.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 16. Formal Models and Semantics, vol. B, pp. 996–1072. Elsevier and MIT Press, New York (1990)Google Scholar
  3. 3.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branching versus linear time temporal logic. J. of the ACM 33(1), 151–178 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM Journal on Computing 29(1), 132–158 (2000)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and Control 61(3), 175–201 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Friedmann, O., Lange, M.: A solver for modal fixpoint logics. In: Proc. 6th Workshop on Methods for Modalities, M4M-6 (2009)Google Scholar
  7. 7.
    Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Gabbay, D.M., Pnueli, A.: A sound and complete deductive system for CTL* verification. Logic Journal of the IGPL 16(6), 499–536 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Luo, X., Su, K., Sattar, A., Chen, Q., Lv, G.: Bounded model checking knowledge and branching time in synchronous multi-agent systems. In: Proc. 4th Int. Conf. on Auton. Agents and Multiagent Syst., AAMAS’05, pp. 1129–1130. ACM, New York (2005)Google Scholar
  12. 12.
    Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. TCS 32(3), 321–330 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: Proc. 21st Symp. on Logic in Computer Science, LICS’06, pp. 255–264. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  14. 14.
    Pnueli, A., Rosner, R.: A framework for the synthesis of reactive modules. In: Vogt, F.H. (ed.) CONCURRENCY 1988. LNCS, vol. 335, pp. 4–17. Springer, Heidelberg (1988)Google Scholar
  15. 15.
    Reynolds, M.: An axiomatization of full computation tree logic. Journal of Symbolic Logic 66(3), 1011–1057 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Reynolds, M.: A tableau for CTL*. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 403–418. Springer, Heidelberg (2009); Long version availabe as technical report of the University of Western AustraliaCrossRefGoogle Scholar
  17. 17.
    Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics of programs. In: Proc. 17th Symp. on Theory of Computing, STOC’85, Baltimore, USA, pp. 240–251. ACM, New York (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oliver Friedmann
    • 1
  • Markus Latte
    • 1
  • Martin Lange
    • 2
  1. 1.Dept. of Computer ScienceUniversity of MunichGermany
  2. 2.Dept. of Electrical Engineering and Computer ScienceUniversity of KasselGermany

Personalised recommendations