Herod and Pilate: Two Tableau Provers for Basic Hybrid Logic

  • Marta Cialdea Mayer
  • Serenella Cerrito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

This work presents two provers for basic hybrid logic HL(@), which have been implemented with the aim of comparing the internalised tableau calculi independently proposed, respectively, by Bolander and Blackburn [3] and Cerrito and Cialdea Mayer [5]. Experimental results are reported, evaluating, from the practical point of view, the different treatment of nominal equalities of the two calculi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., Heguiabehere, J.: hGen: A random CNF formula generator for hybrid languages. In: Methods for Modalities 3 (M4M-3), Nancy, France (2003)Google Scholar
  2. 2.
    Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propositional modal logics K, KT, S4. Journal of Automated Reasoning 24(3), 297–317 (2000)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and Computation 17(3), 517–554 (2007)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Cerrito, S., Cialdea Mayer, M.: An efficient approach to nominal equalities in hybrid logic tableaux. Journal of Applied Non-classical Logics (to appear)Google Scholar
  5. 5.
    Cerrito, S., Cialdea Mayer, M.: Terminating tableaux for HL(@) without loop-checking. Technical Report IBISC-RR-2007-07, Ibisc Lab., Université d’Evry Val d’Essonne (2007), http://www.ibisc.univ-evry.fr/Vie/TR/2007/IBISC-RR2007-07.pdf
  6. 6.
    Cerrito, S., Cialdea Mayer, M.: Tableaux with substitution for hybrid logic with the global and converse modalities. Technical Report RT-DIA-155-2009, Dipartimento di Informatica e Automazione, Università di Roma Tre (2009)Google Scholar
  7. 7.
    Cialdea Mayer, M., Cerrito, S., Benassi, E., Giammarinaro, F., Varani, C.: Two tableau provers for basic hybrid logic. Technical Report RT-DIA-145-2009, Dipartimento di Informatica e Automazione, Università di Roma Tre (2009)Google Scholar
  8. 8.
    Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the Eleventh European Conference on Artificial Intelligence, ECAI’94, pp. 105–109 (1994)Google Scholar
  9. 9.
    Götzmann, D.: Spartacus: A tableau prover for hybrid logic. Master’s thesis, Saarland University (2009)Google Scholar
  10. 10.
    Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A tableau prover for hybrid logic. In: M4M6. Computer Science Research Reports, vol. 128, pp. 201–212. Roskilde University (2009)Google Scholar
  11. 11.
    Hoffmann, G., Areces, C.: HTab: A terminating tableaux system for hybrid logic. Electronic Notes in Theoretical Computer Science, vol. 231, pp. 3–19 (2007); Proceedings of the 5th Workshop on Methods for Modalities, M4M-5 (2007)Google Scholar
  12. 12.
    Leroy, X.: The Objective Caml system, release 3.11. Documentation and user’s manual (2008), http://caml.inria.fr/
  13. 13.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marta Cialdea Mayer
    • 1
  • Serenella Cerrito
    • 2
  1. 1.Università di Roma Tre 
  2. 2.Ibisc, Université d’Evry Val d’Essonne 

Personalised recommendations