Advertisement

iProver-Eq: An Instantiation-Based Theorem Prover with Equality

  • Konstantin Korovin
  • Christoph Sticksel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

iProver-Eq is an implementation of an instantiation-based calculus Inst-Gen-Eq which is complete for first-order logic with equality. iProver-Eq extends the iProver system with superposition-based equational reasoning and maintains the distinctive features of the Inst-Gen method. In particular, first-order reasoning is combined with efficient ground satisfiability checking where the latter is delegated in a modular way to any state-of-the-art SMT solver. The first-order reasoning employs a saturation algorithm making use of redundancy elimination in form of blocking and simplification inferences. We describe the equational reasoning as it is implemented in iProver-Eq, the main challenges and techniques that are essential for efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 404–409. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Ganzinger, H., Korovin, K.: New Directions in Instantiation-Based Theorem Proving. In: LICS 2003, pp. 55–64. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-Based Theorem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Korovin, K.: iProver - An Instantiation-Based Theorem Prover for First-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier, Amsterdam (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Christoph Sticksel
    • 1
  1. 1.School of Computer ScienceThe University of Manchester 

Personalised recommendations