iProver-Eq: An Instantiation-Based Theorem Prover with Equality

  • Konstantin Korovin
  • Christoph Sticksel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)


iProver-Eq is an implementation of an instantiation-based calculus Inst-Gen-Eq which is complete for first-order logic with equality. iProver-Eq extends the iProver system with superposition-based equational reasoning and maintains the distinctive features of the Inst-Gen method. In particular, first-order reasoning is combined with efficient ground satisfiability checking where the latter is delegated in a modular way to any state-of-the-art SMT solver. The first-order reasoning employs a saturation algorithm making use of redundancy elimination in form of blocking and simplification inferences. We describe the equational reasoning as it is implemented in iProver-Eq, the main challenges and techniques that are essential for efficiency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 404–409. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Ganzinger, H., Korovin, K.: New Directions in Instantiation-Based Theorem Proving. In: LICS 2003, pp. 55–64. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-Based Theorem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Korovin, K.: iProver - An Instantiation-Based Theorem Prover for First-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier, Amsterdam (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Konstantin Korovin
    • 1
  • Christoph Sticksel
    • 1
  1. 1.School of Computer ScienceThe University of Manchester 

Personalised recommendations