Advertisement

MUNCH - Automated Reasoner for Sets and Multisets

  • Ruzica Piskac
  • Viktor Kuncak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6173)

Abstract

This system description provides an overview of the MUNCH reasoner for sets and multisets. MUNCH takes as the input a formula in a logic that supports expressions about sets, multisets, and integers. Constraints over collections and integers are connected using the cardinality operator. Our logic is a fragment of logics of popular interactive theorem provers, and MUNCH is the first fully automated reasoner for this logic. MUNCH reduces input formulas to equisatisfiable linear integer arithmetic formulas. MUNCH reasoner is publicly available. It is implemented in the Scala programming language and currently uses the SMT solver Z3 to solve the generated integer linear arithmetic constraints.

Keywords

Cardinality Constraint Satisfying Assignment Arithmetic Formula Linear Arithmetic Input Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007), http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf CrossRefGoogle Scholar
  2. 2.
    Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Isabelle: Isabelle - a generic proof assistant, http://www.cl.cam.ac.uk/research/hvg/Isabelle/
  4. 4.
    KIV: KIV (Karlsruhe Interactive Verifier), http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
  5. 5.
    Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated Reasoning (2006), http://dx.doi.org/10.1007/s10817-006-9042-1
  6. 6.
    Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2), 225–263 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  8. 8.
    Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Pugh, W.: A practical algorithm for exact array dependence analysis. ACM Commun. 35(8), 102–114 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ruzica Piskac
    • 1
  • Viktor Kuncak
    • 1
  1. 1.Swiss Federal Institute of Technology Lausanne (EPFL) 

Personalised recommendations