Advertisement

sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning

  • Enrico Giunchiglia
  • Paolo Marin
  • Massimo Narizzano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)

Abstract

In this paper we present sQueezeBF, an effective preprocessor for QBFs that combines various techniques for eliminating variables and/or redundant clauses. In particular sQueezeBF combines (i) variable elimination via Q-resolution, (ii) variable elimination via equivalence substitution and (iii) equivalence breaking via equivalence rewriting. The experimental analysis shows that sQueezeBF can produce significant reductions in the number of clauses and/or variables - up to the point that some instances are solved directly by sQueezeBF - and that it can significantly improve the efficiency of a range of state-of-the-art QBF solvers - up to the point that some instances cannot be solved without sQueezeBF preprocessing.

Keywords

Boolean Formula Propositional Formula Variable Elimination Equivalence Substitution Equivalence Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayari, A., Basin, D.A.: Bounded model construction for monadic second-order logics. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 99–112. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bubeck, U., Büning, H.K.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Castellini, C., Giunchiglia, E., Tacchella, A.: Improvements to SAT-based conformant planning. In: Proc. ECP (2001)Google Scholar
  6. 6.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate Quantified Boolean Formulae. In: Proc. AAAI (2000)Google Scholar
  9. 9.
    Giunchiglia, E., Marin, P., Narizzano, M.: Don’t care propagation via equivalence rewriting and pure literal detection. Technical report (2010)Google Scholar
  10. 10.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability library, QBFLIB (2001), http://www.qbflib.org
  11. 11.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pan, G., Sattler, U., Vardi, M.Y.: Bdd-based decision procedures for k. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 16–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Samulowitz, H., Davies, J., Bacchus, F.: QBF Preprocessor Prequel (2006), http://www.cs.toronto.edu/~fbacchus/sat.html
  17. 17.
    Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: Proceedings of the 38th Design Automation Conference, pp. 238–243 (2001)Google Scholar
  18. 18.
    Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 663–678. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Tseitin, G.: On the complexity of proofs in propositional logics. Seminars in Mathematics 8 (1970)Google Scholar
  21. 21.
    Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proc. of International Conference on Computer Aided Design, ICCAD 2002 (2002)Google Scholar
  23. 23.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 200. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Enrico Giunchiglia
    • 1
  • Paolo Marin
    • 1
  • Massimo Narizzano
    • 1
  1. 1.DISTUniversità di GenovaGenovaItaly

Personalised recommendations