Advertisement

Uniquely Satisfiable k-SAT Instances with Almost Minimal Occurrences of Each Variable

  • William Matthews
  • Ramamohan Paturi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)

Abstract

Let (k,s)-SAT refer the family of satisfiability problems restricted to CNF formulas with exactly k distinct literals per clause and at most s occurrences of each variable. Kratochvíl, Savický and Tuza [6] show that there exists a function f(k) such that for all s ≤ f(k), all (k,s)-SAT instances are satisfiable whereas for k ≥ 3 and s > f(k), (k,s)-SAT is NP-complete. We define a new function u(k) as the minimum s such that uniquely satisfiable (k,s)-SAT formulas exist. We show that for k ≥ 3, unique solutions and NP-hardness occur at almost the same value of s: f(k) ≤ u(k) ≤ f(k) + 2.

We also give a parsimonious reduction from SAT to (k,s)-SAT for any k ≥ 3 and s ≥ f(k) + 2. When combined with the Valiant–Vazirani Theorem [8], this gives a randomized polynomial time reduction from SAT to UNIQUE-(k,s)-SAT.

Keywords

Conjunctive Normal Form Satisfying Assignment Polynomial Time Reduction Fresh Variable Minimal Occurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k ln 2 − O(k). J. AMS 17, 947–973 (2004)zbMATHGoogle Scholar
  2. 2.
    Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Kleinberg, J.M. (ed.) STOC, pp. 130–139. ACM, New York (2006)Google Scholar
  3. 3.
    Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique k-SAT: An isolation lemma for k-CNFs. J. Comput. Syst. Sci. 74(3), 386–393 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gebauer, H.: Disproof of the neighborhood conjecture with implications to SAT. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 764–775. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kratochvíl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes satisfiability jump from trivial to NP-complete. SIAM Journal on Computing 22(1), 203–210 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8(1), 85–89 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47(1), 85–93 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • William Matthews
    • 1
  • Ramamohan Paturi
    • 1
  1. 1.University of CaliforniaSan DiegoUSA

Personalised recommendations