Advertisement

Reconstructing Solutions after Blocked Clause Elimination

  • Matti Järvisalo
  • Armin Biere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)

Abstract

Preprocessing has proven important in enabling efficient Boolean satisfiability (SAT) solving. For many real application scenarios of SAT it is important to be able to extract a full satisfying assignment for original SAT instances from a satisfying assignment for the instances after preprocessing. We show how such full solutions can be efficiently reconstructed from solutions to the conjunctive normal form (CNF) formulas resulting from applying a combination of various CNF preprocessing techniques implemented in the PrecoSAT solver—especially, blocked clause elimination combined with SatElite-style variable elimination and equivalence reasoning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: Proc. AAAI 2002, pp. 613–619. AAAI Press, Menlo Park (2002)Google Scholar
  4. 4.
    Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matti Järvisalo
    • 1
  • Armin Biere
    • 2
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland
  2. 2.Institute for Formal Models and VerificationJohannes Kepler University LinzAustria

Personalised recommendations