A System for Solving Constraint Satisfaction Problems with SMT

  • Miquel Bofill
  • Josep Suy
  • Mateu Villaret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)


SAT Modulo Theories (SMT) consists of deciding the satisfiability of a formula with respect to a decidable background theory, such as linear integer arithmetic, bit-vectors, etc, in first-order logic with equality. SMT has its roots in the field of verification. It is known that the SAT technology offers an interesting, efficient and scalable method for constraint solving, as many experimentations have shown. Although there already exist some results pointing out the adequacy of SMT techniques for constraint solving, there are no available tools to extensively explore such adequacy. In this paper we introduce a tool for translating FlatZinc (MiniZinc intermediate code) instances of constraint satisfaction problems to the standard SMT-LIB language. It can be used for deciding satisfiability as well as for optimization. The tool determines the required logic for solving each instance. The obtained results suggest that SMT can be effectively used to solve CSPs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bofill, M., Palahi, M., Suy, J., Villaret, M.: SIMPLY: a Compiler from a CSP Modeling Language to the SMT-LIB Format. In: Proceedings of the 8th Intl. Workshop on Constraint Modelling and Reformulation, pp. 30–44 (2009)Google Scholar
  2. 2.
    Cadoli, M., Mancini, T., Patrizi, F.: SAT as an Effective Solving Technology for Constraint Problems. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 540–549. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Dutertre, B., de Moura, L.: The Yices SMT solver (August 2006), Tool paper at http://yices.csl.sri.com/tool-paper.pdf
  4. 4.
    Frisch, A., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: A Constraint Language for Specifying Combinatorial Problems. Constraints 13(3), 268–306 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Huang, J.: Universal Booleanization of Constraint Models. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Challenges in Satisfiability Modulo Theories. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 2–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Tech. rep., Dept. of Comp. Science, University of Iowa (2006), http://www.SMT-LIB.org
  11. 11.
    Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Modeling and Computation 3(3-4), 141–224 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Sheini, H., Sakallah, K.: From Propositional Satisfiability to Satisfiability Modulo Theories. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 1–9. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Walsh, T.: SAT vs CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Miquel Bofill
    • 1
  • Josep Suy
    • 1
  • Mateu Villaret
    • 1
  1. 1.Departament d’Informàtica i Matemàtica AplicadaUniversitat de GironaGironaSpain

Personalised recommendations