Advertisement

Encoding Techniques, Craig Interpolants and Bounded Model Checking for Incomplete Designs

  • Christian Miller
  • Stefan Kupferschmid
  • Matthew Lewis
  • Bernd Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)

Abstract

This paper focuses on bounded invariant checking for partially specified circuits – designs containing so-called blackboxes – using the well known 01X- and QBF-encoding techniques. For detecting counterexamples, modeling the behavior of a blackbox using 01X-encoding is fast, but rather coarse as it limits what problems can be verified. We introduce the idea of 01X-hardness, mainly the classification of problems for which this encoding technique does not provide any useful information about the existence of a counterexample. Furthermore, we provide a proof for 01X-hardness based on Craig interpolation, and show how the information contained within the Craig interpolant or unsat-core can be used to determine heuristically which blackbox outputs to model in a more precise way. We then compare 01X, QBF and multiple hybrid modeling methods. Finally, our total workflow along with multiple state-of-the-art QBF-solvers are shown to perform well on a range of industrial blackbox circuit problems.

Keywords

BMC blackbox SAT QBF Craig interpolation unsat-core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satisfiability Solving. Formal Methods in System Design 19, 7–34 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Craig, W.: Linear Reasoning: A New Form of the Herbrand-Gentzen Theorem. Journal of Symbolic Logic 22(3), 250–268 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Herbstritt, M., Becker, B.: On SAT-based Bounded Invariant Checking of Blackbox Designs. In: Microprocessor Test and Verification Workshop (MTV), pp. 23–28 (2005)Google Scholar
  6. 6.
    Herbstritt, M., Becker, B.: On Combining 01X-Logic and QBF. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 531–538. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Herbstritt, M., Becker, B., Scholl, C.: Advanced SAT-Techniques for Bounded Model Checking of Blackbox Designs. In: Microprocessor Test and Verification (MTV), pp. 37–44 (2006)Google Scholar
  8. 8.
    Jain, A., Boppana, V., Mukherjee, R., Jain, J., Fujita, M., Hsiao, M.: Testing, Verification, and Diagnosis in the Presence of Unknowns. In: IEEE VLSI Test Symposium (VTS), pp. 263–269 (2000)Google Scholar
  9. 9.
    Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT Solving. In: 12th Asia and South Pacific Design Automation Conference, pp. 926–931 (2007)Google Scholar
  10. 10.
    Lewis, M., Schubert, T., Becker, B.: QMiraXT – A Multithreaded QBF Solver. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (2009)Google Scholar
  11. 11.
    McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Nopper, T., Scholl, C.: Approximate Symbolic Model Checking for Incomplete Designs. In: Formal Methods in Computer-Aided Design, pp. 290–305 (2004)Google Scholar
  13. 13.
    Nopper, T., Scholl, C.: Flexible Modeling of Unknowns in Model Checking for Incomplete Designs. In: 8. GI/ITG/GMM Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (2005)Google Scholar
  14. 14.
    Nopper, T., Scholl, C., Becker, B.: Computation of Minimal Counterexamples by Using Black Box Techniques and Symbolic Methods. In: IEEE Int’l Conf. on Computer-Aided Design, pp. 273–280 (2007)Google Scholar
  15. 15.
  16. 16.
    Pigorsch, F., Scholl, C.: Exploiting Structure in an AIG Based QBF Solver. In: Conf. on Design, Automation and Test in Europe (DATE), April 2009, pp. 1596–1601 (2009)Google Scholar
  17. 17.
    QBF Solver Evaluation, http://www.qbflib.org/index_eval.php
  18. 18.
    Scholl, C., Becker, B.: Checking Equivalence for Partial Implementations. In: Design Automation Conf., pp. 238–243 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian Miller
    • 1
  • Stefan Kupferschmid
    • 1
  • Matthew Lewis
    • 1
  • Bernd Becker
    • 1
  1. 1.Albert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations