Improving Unsatisfiability-Based Algorithms for Boolean Optimization

  • Vasco Manquinho
  • Ruben Martins
  • Inês Lynce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6175)

Abstract

Recently, several unsatisfiability-based algorithms have been proposed for Maximum Satisfiability (MaxSAT) and other Boolean Optimization problems. These algorithms are based on being able to iteratively identify and relax unsatisfiable sub-formulas with the use of fast Boolean satisfiability solvers. It has been shown that this approach is very effective for several classes of instances, but it can perform poorly on others for which classical Boolean optimization algorithms find it easy to solve. This paper proposes the use of Pseudo-Boolean Optimization (PBO) solvers as a preprocessor for unsatisfiability-based algorithms in order to increase its robustness. Moreover, the use of constraint branching, a well-known technique from Integer Linear Programming, is also proposed into the unsatisfiability-based framework. Experimental results show that the integration of these features in an unsatisfiability-based algorithm results in an improved and more effective solver for Boolean optimization problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloul, F., Ramani, A., Markov, I., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP: An update. In: International Conference on Computer-Aided Design, pp. 450–457 (2002)Google Scholar
  2. 2.
    Ansótegui, C., Bonet, M., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfiability Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for partial max-sat. In: Proceedings of the International Conference on Nonconvex Programming: Local and Global Approaches (NCP-2007), pp. 230–231 (2007)Google Scholar
  4. 4.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: Fourth Max-SAT evaluation (2009), http://www.maxsat.udl.cat/09/
  5. 5.
    Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 183–192. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P.: Branch-and-price: Column generation for solving huge integer programs. Operations Research 46(3), 316–329 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Barth, P.: A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean Optimization. Technical Report MPI-I-95-2-003, Max Plank Institute for Computer Science (1995)Google Scholar
  8. 8.
    Berre, D.L.: SAT4J library, http://www.sat4j.org
  9. 9.
    Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation 2, 75–97 (2008)MATHGoogle Scholar
  10. 10.
    Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. In: Design Automation Conference, pp. 830–835 (2003)Google Scholar
  11. 11.
    Eén, N., Sörensson, N.: Minisat 2.0 sat solver, http://minisat.se/MiniSat.html
  12. 12.
    Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2 (2006)Google Scholar
  13. 13.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient weighted Max-SAT solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)MathSciNetMATHGoogle Scholar
  15. 15.
    Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artificial Intelligence 172(2-3), 204–233 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial Intelligence Research 30, 321–359 (2007)MathSciNetMATHGoogle Scholar
  17. 17.
    Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for MAX-SAT solving. In: International Joint Conference on Artificial Intelligence, pp. 2334–2339 (2007)Google Scholar
  18. 18.
    Manquinho, V., Marques-Silva, J.: Search pruning techniques in SAT-based branch-and-bound algorithms for the binate covering problem. IEEE Transactions on Computer-Aided Design 21(5), 505–516 (2002)CrossRefGoogle Scholar
  19. 19.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: Design, Automation and Testing in Europe Conference, March 2008, pp. 408–413 (2008)Google Scholar
  22. 22.
    Martins, R., Lynce, I., Manquinho, V.: Preprocessing in pseudo-boolean optimization: An experimental evaluation. In: Eighth International Workshop on Constraint Modelling and Reformulation (2009)Google Scholar
  23. 23.
    Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., Darwiche, A.: Solving weighted Max-SAT problems in a reduced search space: A performance analysis. Journal on Satisfiability Boolean Modeling and Computation 4, 191–217 (2008)MATHGoogle Scholar
  24. 24.
    Ramírez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation for solving MinCostSAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 605–619. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Ryan, D., Foster, B.: An integer programming approach to scheduling. In: Computer Scheduling of Public Transport, pp. 269–280 (1981)Google Scholar
  26. 26.
    Sheini, H., Sakallah, K.: Pueblo: A Modern Pseudo-Boolean SAT Solver. In: Design, Automation and Testing in Europe Conference, pp. 684–685 (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vasco Manquinho
    • 1
  • Ruben Martins
    • 1
  • Inês Lynce
    • 1
  1. 1.IST/INESC-IDTechnical University of LisbonPortugal

Personalised recommendations