Forbidding Undesirable Agreements: A Dependence-Based Approach to the Regulation of Multi-agent Systems

  • Paolo Turrini
  • Davide Grossi
  • Jan Broersen
  • John-Jules Ch. Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6181)

Abstract

The purpose of this contribution is to set up a language to evaluate the results of concerted action among interdependent agents against predetermined properties that we can recognise as desirable from a deontic point of view. Unlike the standard view of logics to reason about coalitionally rational action, the capacity of a set of agents to take a rational decision will be restricted to what we will call agreements, that can be seen as solution concepts to a dependence structure present in a certain game. The language will identify in concise terms those agreements that act accordingly or disaccordingly with the desirable properties arbitrarily set up in the beginning, and will reveal, by logical reasoning, a variety of structural properties of this type of collective action.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ågotnes, T., Wooldridge, M., van der Hoek, W.: On the logic of coalitional games. In: Proceedings of the Fifth International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Hakodate, Japan, May 2006, pp. 153–160. ACM Press, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Aldewereld, H., van der Hoek, W., Meyer, J.-J.C.: Rational teams: Logical aspects of multi-agent systems. Fundamenta Informaticae 63(2,3), 159–183 (2004)MATHMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 100. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  4. 4.
    Belnap, N., Perloff, M., Xu, M.: Facing The Future: Agents And Choices In Our Indeterminist World. Oxford University Press, USA (2001)Google Scholar
  5. 5.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science (2001)Google Scholar
  6. 6.
    Borgo, S.: Coalitions in action logic. In: IJCAI, pp. 1822–1827 (2007)Google Scholar
  7. 7.
    Broersen, J., Mastop, R., Meyer, J.-J., Turrini, P.: A deontic logic for socially optimal norms. In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 218–232. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Broersen, J., Mastop, R., Meyer, J.-J., Turrini, P.: A modal representation of strategic reasoning. Technical Report UU-CS-2009-014, Department of Information and Computing Sciences, Utrecht University (2009)Google Scholar
  9. 9.
    Castelfranchi, C.: Modelling social action for ai agents. Artificial Intelligence 103, 157–182 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Castelfranchi, C.: The micro-macro constitution of power. Protosociology 18-19, 208–265 (2003)Google Scholar
  11. 11.
    Castelfranchi, C., Cesta, A., Miceli, M.: Dependence relations among autonomous agents. In: Decentralized A.I.-3. Elsevier, Amsterdam (1992)Google Scholar
  12. 12.
    Coleman, J.: Foundations of Social Theory. Belknap Harvard (1990)Google Scholar
  13. 13.
    Grossi, D., Turrini, P.: Dependence theory via game theory. In: Proceedings of the 10th international conference of Autonomous Agents and Multi Agent Systems (2010)Google Scholar
  14. 14.
    Highsmith, P.: Strangers on a Train. Nationwide Book Service (1950)Google Scholar
  15. 15.
    Kooi, B., Tamminga, A.: Conflicting obligations in multi-agent deontic logic. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 175–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Meyer, J.C.: A different approach to deontic logic: Deontic logic viewed as a variant of dynamic logic. Notre Dame J. of Formal Logic 29(1), 109–136 (1988)MATHCrossRefGoogle Scholar
  17. 17.
    Meyer, J.-J.C., Wieringa, R.J.: Deontic logic: a concise overview. pp. 3–16 (1993)Google Scholar
  18. 18.
    Osborne, M., Rubinstein, A.: A course in Game Theory. The MIT Press, Cambridge (1994)Google Scholar
  19. 19.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)Google Scholar
  20. 20.
    Parikh, R.: The logic of games and its applications. In: Selected papers of the international conference on “foundations of computation theory” on Topics in the theory of computation, New York, NY, USA, pp. 111–139. Elsevier North-Holland, Inc., Amsterdam (1985)Google Scholar
  21. 21.
    Pauly, M.: Logic for Social Software. ILLC Dissertation Series (2001)Google Scholar
  22. 22.
    Sergot, M.J., Craven, R.: The deontic component of action language nC+. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Turrini, P., Broersen, J., Mastop, R., Meyer, J.-J.C.: An update operator for strategic ability. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS, vol. 5834, pp. 292–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    van Benthem, J.: In praise of strategies. Research Report (2007), http://www.illc.uva.nl/Publications/ResearchReports/PP-2008-03.text.pdf
  25. 25.
    van der Hoek, W., Jamroga, W., Wooldridge, M.: A logic for strategic reasoning. In: AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 157–164. ACM, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paolo Turrini
    • 1
  • Davide Grossi
    • 2
  • Jan Broersen
    • 1
  • John-Jules Ch. Meyer
    • 1
  1. 1.Utrecht UniversityThe Netherlands
  2. 2.University of AmsterdamThe Netherlands

Personalised recommendations