Evaluation of Time Sample and Span Size Effects in DES of Nominally 2D Airfoils beyond Stall

  • A. Garbaruk
  • S. Leicher
  • C. Mockett
  • P. Spalart
  • M. Strelets
  • F. Thiele
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 111)

Abstract

A detailed investigation of detached-eddy simulation (DES) applied to the flow around nominally 2D airfoils in deep stall has been conducted. The sensitivity of the flow to a wide range of computational parameters has been assessed. The principal parameters of influence were found to be the length of the time sample computed for Reynolds averaging and the size of the periodic computational domain in the spanwise direction. In contrast, wind tunnel wall effects, the choice of underlying RANS model and the boundary layer transition treatment counted among the parameters for which a low to negligible level of sensitivity was observed. The magnitude of the error introduced by short time samples has been estimated using a statistical analysis technique. This combined with very long time samples (in excess of 2000 non-dimensional units) allows a reliable description of the span size effect independent of the time sample error. The study significantly enhances the body of knowledge concerning this standard validation flow for hybrid RANS-LES methods. The original DES study of Shur et al. (1999), which was conducted for such a flow, is reassessed in light of the new information and its principal conclusions are upheld. The strong level of scatter observed between different experimental sources represents the chief remaining uncertainty.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendat, J.S., Piersol, A.G.: Random data, analysis and measurement procedures. John Wiley & Sons, Inc., Chichester (1986)MATHGoogle Scholar
  2. Guenot, D.: Simulation des effets instationnaires à grande échelle dans les écoulements décollés. Ph.D. thesis, SUPAERO (2004)Google Scholar
  3. Haase, W., Braza, M., Revell, A. (eds.): DESider – A European effort on hybrid RANS-LES modelling. Notes Numer. Fluid Mech. Multidiscip. Design, vol. 103. Springer, Heidelberg (2009)Google Scholar
  4. Hoerner, S.: Fluid-dynamic drag. Hoerner Fluid Dynamics, New Jersey (1965)Google Scholar
  5. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. Lübcke, H.: Entwicklung expliziter Darstellungen zweiter statistischer Momente zur numerischen Simulation turbulenter Strömungen. Ph.D thesis, Technische Universität Berlin (2001)Google Scholar
  7. Mockett, C.: A comprehensive study of detached-eddy simulation. Ph.D. thesis, Technische Universität Berlin (2009)Google Scholar
  8. Raghunathan, S., Harrison, J.R., Hawkins, B.D.: Thick airfoil at low Reynolds number and high incedence. J. Aircr. 25(7), 669–671 (1988)CrossRefGoogle Scholar
  9. Rung, T., Thiele, F.: Computational modelling of complex boundary-layer flows. In: Proc 9th Int. Symp. Transp. Phenom. Therm-Fluid Eng., Singapore (1996)Google Scholar
  10. Rung, T., Bunge, U., Schatz, M., Thiele, F.: Restatement of the Spalart–Allmaras eddy-viscosity model in strain-adaptive formulation. AIAA J. 41(7), 1396–1399 (2003)CrossRefGoogle Scholar
  11. Schwamborn, D., Gerhold, T., Hannemann, V.: On the validation of the DLR Tau code. In: Nitsche, W., Heinamann, H.J., Hilbig, R. (eds.) New Results Numer. Exp. Fluid Mech. II. Springer, Heidelberg (1998)Google Scholar
  12. Sheldahl, R.E., Klimas, P.C.: Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Laboratories SAND80-2114 (1981)Google Scholar
  13. Shur, M., Spalart, P.R., Strelets, M., Travin, A.: Detached-eddy simulation of an airfoil at high angle of attack. In: Rodi, W., Laurence, D. (eds.) Eng. Turbul. Model. Exp., vol. 4, pp. 669–678. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  14. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  15. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In: Proc 30th AIAA Aerosp. Sci. Meet. Exhib., Reno (1992)Google Scholar
  16. Spalart, P.R., Jou, W., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Adv DNS/LES 1 (1997)Google Scholar
  17. Strelets, M.: Detached eddy simulation of massively separated flows. In: Proc 30th AIAA Aerosp. Sci. Meet. Exhib., Reno (2001)Google Scholar
  18. Swalwell, K.: The effect of turbulence on stall of horizontal axis wind turbines. Ph.D thesis, Monash University (2005)Google Scholar
  19. Swalwell, K., Sheridan, J., Melbourne, W.: Frequency analysis of surface pressure on an airfoil after stall. In: Proc 21st AIAA Appl. Aerodyn. Conf. (2004)Google Scholar
  20. Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Friedrich, R., Rodi, W. (eds.) Advances in LES of Complex Flows. Kluwer Acad., New York (2000)Google Scholar
  21. Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. Ph.D thesis, Technische Universität Berlin (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Garbaruk
    • 1
  • S. Leicher
    • 2
  • C. Mockett
    • 3
  • P. Spalart
    • 4
  • M. Strelets
    • 1
  • F. Thiele
    • 3
  1. 1.New Technologies and ServicesSt.-PetersburgRussia
  2. 2.EADS Military Air SystemsMunichGermany
  3. 3.Technische Universität Berlin & CFD Software GmbHGermany
  4. 4.Boeing Commercial AirplanesSeattleUSA

Personalised recommendations