Experimental and Numerical Investigation of Transonic Bump Flow

  • J. -C. Huang
  • G. Barakos
  • E. Benard
  • G. Barbut
  • Y. Hoarau
  • M. Braza
  • P. Derian
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 111)

Abstract

A combined experimental and numerical investigation of transonic shock wave/boundary layer interaction over a wall-mounted bump has been undertaken looking at the details of the flow and the capability of CFD in predicting such complex, yet fundamental, aerodynamic interactions. The transonic wind tunnel of the Queens University of Belfast (QUB) has been employed for experiments that were combined with CFD investigations carried out by the University of Liverpool (ULIV) and the Institut de Méchanique des Fluides de Toulouse (IMFT). Zonal LES methods based on wall modelling, and computations using the Organised Eddy Simulation method were used for the numerical solutions. The shock unsteadiness was not resolved by any of the employed statistical turbulence closures. On the contrary, attempts to use turbulence simulation resulted in unsteady flow solutions. Based on the obtained results, a flow mechanism has been suggested which was found to be in agreement with previous experimental observations. This work was carried out as part of the UFAST F6 EC research project in unsteady shock/boundary-layer interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., Yang, J., Leschziner, M.A.: An Investigation of Wall Anisotropy Expressions and Length Scale Equations for Non-linear Eddy Viscosity Models. J. Heat, Fluid Flow 24(2), 181–198 (2003)CrossRefGoogle Scholar
  2. Amecke, J.: Direct Calculation of Wall Interferences and Wall Adaption for Two-dimensional Flow in Wind Tunnels with Closed Walls, NASA Technical Memorandum TM 88523 (1986)Google Scholar
  3. Barakos, G., Drikakis, D.: Assessment of Various Low-Reynolds Number Turbulence Models in Shock-Boundary Layer Interaction. Comp. Meth. Appl. Mech. Engng. 160(1-2), 155–174 (1998)MATHCrossRefGoogle Scholar
  4. Bourguet, R., Braza, M., Harran, G., El Akoury, R.: Anisotropic Organised Eddy Simulation for the Prediction of Non-equilibrium Turbulent Flows Around Bodies. J. Fluids and Structures 24(8), 1240–1251 (2008)CrossRefGoogle Scholar
  5. Braza, M., Perrin, R., Hoarau, Y.: Turbulence Properties in the Cylinder Wake at High Reynolds Number. J. Fluids and Structures 22(6-7), 757–771 (2006)CrossRefGoogle Scholar
  6. Bron, O.: Numerical and Experimental Study of the Shock-Boundary Layer Interaction in Transonic Unsteady Flow. Ph.D. thesis, Royal Institute of Technology, Sweden (2003)Google Scholar
  7. Delery, J., Marvin, J.G.: Shock-Wave Boundary Layer Interactions, North Atlantic Treaty Organization: Advisory Group for Aerospace Research and Development, AGARDograph No. 280 (1986)Google Scholar
  8. Delery, J.: Shock Wave/Turbulent Boundary Layer Interaction and its Control. Progress in Aerospace Sciences 22, 209–228 (1985)CrossRefGoogle Scholar
  9. Erlebacher, G., et al.: Toward the Large-Eddy Simulation of Compressible Turbulent Flows. J. Fluid Mechanics 238, 155–185 (1992)MATHCrossRefGoogle Scholar
  10. Huang, J.C., Gault, R.I., Benard, E., Raghunathan, A.: Effect of Humidity on Transonic Bump Flow. Journal of Aircraft 45(6), 2092–2100 (2008)CrossRefGoogle Scholar
  11. Huang, J.C., Benard, E.: QUB Report on WP-2 Basic Experiments Data-bank Input, UFAST Deliverable D2.1.7 (2007)Google Scholar
  12. Jameson, A.: Computational Algorithms for Aerodynamic Analysis and Design. Applied Numerical Mathematics 13(5), 383–422 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. Johnson, D.A., Horstman, C.C., Bachalo, W.D.: Comparison between Experiment and Prediction for a Transonic Turbulent Separated Flow. AIAA J. 20(6), 737–744 (1982)CrossRefGoogle Scholar
  14. Levy, L.L.: Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil. AIAA J. 16(6), 564–572 (1982)CrossRefGoogle Scholar
  15. Liu, X., Squire, L.C.: An Investigation of Shock/Boundary Layer Interactions on Curved Surfaces at Transonic Speeds. J. Fluid Mech. 187, 467–486 (1987)CrossRefGoogle Scholar
  16. Martinat, G., Braza, M., Hoarau, Y., Harran, G.: Turbulence Modelling of the Flow Past a Pitching NACA0012 Airfoil at 105 and 106 Reynolds Numbers. Journal of Fluids and Structures 24(8), 1294–1303 (2008)CrossRefGoogle Scholar
  17. Nicoud, F., Ducros, F.: Sub-grid Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbulence and Combustion 62(3), 183–200 (1999)MATHCrossRefGoogle Scholar
  18. Pearcey, H.H.: Some Effects of Shock-Induced Separation of Turbulent Boundary Layers in Transonic Flow Past Aerofoils, Aeronautical Research Council Reports and Memoranda No. 3180 (1959)Google Scholar
  19. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. La Recherche Aerospatiale 1, 5–21 (1994)Google Scholar
  20. Temmerman, L., Leschziner, M.A., Hanjalic, K.: A-priori Studies of a Near-Wall RANS Model Within a Hybrid LES/RANS Scheme. In: Rodi, W., Fueyo, N. (eds.) Engineering Turbulence Modelling and Experiment, vol. 5, pp. 317–326 (2000)Google Scholar
  21. Wallin, S., Johansson, A.: An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Flows. J. Fluid Mech. 403, 89–132 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. Wlicox, D.C.: Turbulence Modelling for CFD, 3rd edn. DCW Industries, LaCanada (2006)Google Scholar
  23. Wollblad, C., Davidson, L., Eriksson, L.E.: Large Eddy Simulation of Transonic Flow with Shock Wave/Turbulent Boundary Layer Interaction. AIAA J. 44(10), 2340–2353 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. -C. Huang
    • 1
  • G. Barakos
    • 2
  • E. Benard
    • 3
  • G. Barbut
    • 4
  • Y. Hoarau
    • 4
  • M. Braza
    • 4
  • P. Derian
    • 4
  1. 1.School of Aeronautical EngineeringQueen’s University of BelfastBelfastUnited Kingdom
  2. 2.Department of EngineeringUniversity of LiverpoolLiverpoolUnited Kingdom
  3. 3.Department of Aerospace EngineeringUniversity of GlasgowGlasgowUnited Kingdom
  4. 4.Institut de Méchanique des Fluides de ToulouseAllée du Prof. Camille SoulaToulouseFrance

Personalised recommendations