Advertisement

Prediction of Transonic Buffet around a Wing with Flap

  • G. Barbut
  • M. Braza
  • Y. Hoarau
  • G. Barakos
  • A. Sévrain
  • J. B. Vos
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 111)

Abstract

The present study presents numerical simulations and turbulence modelling of the flow around a NACA0012 airfoil including a deflected aileron. The results are compared with experiments that have been performed in the N-3 wind tunnel of the Institute of Aviation (IoA), Warsaw. The experiment focused on unsteady flow characteristics and buffet phenomena arising as the result of the transonic shock wave / boundary layer interaction (SWBLI). The transonic buffet is a natural and self-sustaining oscillation of the shock wave and separated flow region, caused by pressure fluctuation. The first objective is to capture the transonic buffet unsteadiness by means of URANS and DES turbulence modelling approaches. Secondly, the periodic flap oscillation has been used to modify the oscillation amplitudes towards an outlook of attenuation of the transonic buffet.

Keywords

Suction Side Detach Eddy Simulation NACA0012 Airfoil Flap Deflection Separate Flow Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barakos, G.: UFAST Report, 48-month IoA Case Contribution (April 12, 2009)Google Scholar
  2. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. (1984)Google Scholar
  3. Marple, S.L.: Digital Spectral Analysis. Prentice-Hall, Englewood Cliffs (1987)Google Scholar
  4. Miller, M., Kania, V.: Parameters for aerofoil and aileron oscillations, UFAST Deliverable D3.1.3 (March 2009)Google Scholar
  5. Seegmiller, H.L., Marvin, J.G., Levy, L.L.: Steady and unsteady transonic flow. AIAA J. 16(12), 1260–1270 (1978)CrossRefGoogle Scholar
  6. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92-0439 (1992)Google Scholar
  7. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach. In: Advances in DNS/LES, Proceedings of the First AFOSR International Conference on DNS/LES (1997)Google Scholar
  8. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M., Travin, A.: A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comp. Fluid Dyn. 20, 181–195 (2006)zbMATHCrossRefGoogle Scholar
  9. Vos, J., Chaput, E., Arlinger, B., Rizzi, A., Corjon, A.: Recent advances in aerodynamics inside the NSMB (Navier-Stokes Multi-Block) consortium. In: 36th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1998-0802, Reno, USA (1998)Google Scholar
  10. Wilcox, D.C.: Turbulence Modelling for CFD, DCW Industries, California, USA (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • G. Barbut
    • 1
  • M. Braza
    • 1
  • Y. Hoarau
    • 2
  • G. Barakos
    • 3
  • A. Sévrain
    • 1
  • J. B. Vos
    • 4
  1. 1.Institut de Mécanique des Fluides de ToulouseFrance
  2. 2.Institut de Mécanique des Fluides et de Solides de StrasbourgFrance
  3. 3.University of LiverpoolUK
  4. 4.CFS EngineeringSwitzerland

Personalised recommendations