Advertisement

Streaming Algorithms for Independent Sets

  • Bjarni V. Halldórsson
  • Magnús M. Halldórsson
  • Elena Losievskaja
  • Mario Szegedy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6198)

Abstract

We find “combinatorially optimal” (guaranteed by the degree-sequence alone) independent sets for graphs and hypergraps in linear space in the semi-streaming model.

We also propose a new output-efficient streaming model, that is more restrictive than semi-streaming (n ·log O(1) n space) but more flexible than classic streaming (log O(1) n space). The algorithms in this model work in poly-logarithmic space, like in the case of the classical streaming model, but they can access and update the output buffer, treating it as an extra piece of memory.

Our results form the first treatment of the classic IS problem in the streaming setting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, K.J., Guha, S.: Graph Sparsification in the Semi-streaming Model. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 328–338. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Arad, U., Azar, Y.: Independent Sets in Hypergraphs with Applications to Routing via Fixed Paths. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 16–27. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Computer and System Sciences 58(1), 1167–1181 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Alon, N., Spencer, J.H.: The probabilistic method. John Wiley and Sons, Chichester (1992)zbMATHGoogle Scholar
  5. 5.
    Bar-Yossed, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: SODA, pp. 623–632 (2002)Google Scholar
  6. 6.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Streaming graph computations with a helpful advisor. arXiv:1004.2899v1Google Scholar
  7. 7.
    Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: SODA, pp. 714–723 (2006)Google Scholar
  8. 8.
    Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Rawitz, D.: Online set packing. To appear in PODC (2010)Google Scholar
  9. 9.
    Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees for weighted matching in the semi-streaming model. In: STACS (2010)Google Scholar
  10. 10.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On Graph Problems in a Semi-Streaming Model. Theoretical Computer Science 348(2), 207–216 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theoretical Computer Science 289(2), 953–962 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Muthukrishnan, S.: Data Streams: Algorithms and Applications (2003) (manuscript), http://athos.rutgers.edu/~muthu/stream-1-1.ps
  14. 14.
    Shachnai, H., Srinivasan, A.: Finding Large Independent Sets of Hypergraphs in Parallel. SIAM J. Discrete Math. 18(3), 488–500 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bjarni V. Halldórsson
    • 1
  • Magnús M. Halldórsson
    • 2
  • Elena Losievskaja
    • 2
  • Mario Szegedy
    • 3
  1. 1.School of Science and EngineeringReykjavik UniversityReykjavikIceland
  2. 2.School of Computer ScienceReykjavik University 
  3. 3.Dept. of Computer ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations