Network Design via Core Detouring for Problems without a Core

  • Fabrizio Grandoni
  • Thomas Rothvoß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6198)


Some of the currently best-known approximation algorithms for network design are based on random sampling. One of the key steps of such algorithms is connecting a set of source nodes to a random subset of them. In a recent work [Eisenbrand,Grandoni,Rothvoß,Schäfer-SODA’08], a new technique, core-detouring, is described to bound the mentioned connection cost. This is achieved by defining a sub-optimal connection scheme, where paths are detoured through a proper connected subgraph (core). The cost of the detoured paths is bounded against the cost of the core and of the distances from the sources to the core. The analysis then boils down to proving the existence of a convenient core.

For some problems, such as connected facility location and single-sink rent-or-buy, the choice of the core is obvious (i.e., the Steiner tree in the optimum solution). Other, more complex network design problems do not exhibit any such core. In this paper we show that core-detouring can be nonetheless successfully applied. The basic idea is constructing a convenient core by manipulating the optimal solution in a proper (not necessarily trivial) way. We illustrate that by presenting improved approximation algorithms for two well-studied problems: virtual private network design and single-sink buy-at-bulk.


Approximation algorithms network design virtual private network buy-at-bulk rent-or-buy core detouring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the cost more efficiently: improved approximation for multicommodity rent-or-buy. ACM Transactions on Algorithms 3(2) (2007)Google Scholar
  2. 2.
    Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An Improved LP-based Approximation for Steiner tree. In: STOC (to appear, 2010) (Best Paper Award)Google Scholar
  3. 3.
    Duffield, N.G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., van der Merwe, J.E.: A flexible model for resource management in virtual private networks. In: SIGCOMM, pp. 95–108 (1999)Google Scholar
  4. 4.
    Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private network design. In: SODA, pp. 928–932 (2005)Google Scholar
  5. 5.
    Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual private network design. SIAM Journal on Computing 37(3), 706–721 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected facility location problems via random facility sampling and core detouring. In: SODA, pp. 1174–1183 (2008)Google Scholar
  7. 7.
    Fingerhut, J.A., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband networks. Journal of Algorithms 24(2), 287–309 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost sharing schemes for multicommodity rent-or-buy and stochastic steiner tree. In: STOC, pp. 663–670 (2006)Google Scholar
  9. 9.
    Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combinatorial optimization problems. In: SODA, pp. 942–951 (2008)Google Scholar
  10. 10.
    Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F., Sinha, A.: On the integrality gap of a natural formulation of the single-sink buy-at-bulk network design problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 170–184. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Goyal, N., Olver, N., Shepherd, F.B.: The VPN conjecture is true. In: STOC, pp. 443–450 (2008)Google Scholar
  12. 12.
    Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Grandoni, F., Kaibel, V., Oriolo, G., Skutella, M.: A short proof of the VPN Tree Routing Conjecture on ring networks. Operations Research Letters 36(3), 361–365 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink edge installation problem. SIAM Journal on Computing 38(6), 2426–2442 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: a network design problem for multicommodity flow. In: STOC, pp. 389–398 (2001)Google Scholar
  16. 16.
    Gupta, A., Kumar, A., Pal, M., Roughgarden, T.: Approximation via cost-sharing: simpler and better approximation algorithms for network design. Journal of the ACM 54(3), 11 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: STOC, pp. 365–372 (2003)Google Scholar
  18. 18.
    Gupta, A., Pál, M.: Stochastic Steiner trees without a root. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1051–1063. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Hurkens, C.A.J., Keijsper, J.C.M., Stougie, L.: Virtual Private Network Design: A Proof of the Tree Routing Conjecture on Ring Networks. SIAM Journal on Discrete Mathematics 21(2), 482–503 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Italiano, G.F., Leonardi, S., Oriolo, G.: Design of trees in the hose model: The balanced case. Operations Research Letters 34(6), 601–606 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Jothi, R., Raghavachari, B.: Improved approximation algorithms for the single-sink buy-at-bulk network design problems. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 336–348. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Karger, D.R., Minkoff, M.: Building steiner trees with incomplete global knowledge. In: FOCS, pp. 613–623 (2000)Google Scholar
  23. 23.
    Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric network design. In: FOCS, pp. 624–630 (2000)Google Scholar
  24. 24.
    Rothvoß, T., Sanità, L.: On the complexity of the asymmetric VPN problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. LNCS, vol. 5687, pp. 326–338. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Swamy, C., Kumar, A.: Primal–dual algorithms for connected facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 256–269. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Shmoys, D.B., Talwar, K.: A Constant Approximation Algorithm for the a priori Traveling Salesman Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–486. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    van Zuylen, A.: Deterministic Sampling Algorithms for Network Design. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 830–841. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fabrizio Grandoni
    • 1
  • Thomas Rothvoß
    • 2
  1. 1.Dipartimento di Informatica, Sistemi e ProduzioneUniversità di Roma Tor VergataRomaItaly
  2. 2.Institute of MathematicsEPFLLausanneSwitzerland

Personalised recommendations