Dynamic Programming for Graphs on Surfaces

  • Juanjo Rué
  • Ignasi Sau
  • Dimitrios M. Thilikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6198)


We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in \(2^{\mathcal{O}(k\cdot \log k)}\cdot n\) steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called surface cut decomposition, capturing how partial solutions can be arranged on a surface. Then we use singularity analysis over expressions obtained by the symbolic method to prove that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in \(2^{\mathcal{O}(k)}\cdot n\) steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve all previous results in this direction.


analysis of algorithms parameterized algorithms analytic combinatorics graphs on surfaces branchwidth dynamic programming polyhedral embeddings symbolic method non-crossing partitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster Parameterized Algorithms for Minor Containment. In: Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT) (to appear, 2010)Google Scholar
  2. 2.
    Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proc. of the 17th Conf. on Uncertainty in Artificial Intelligence (UAI), pp. 7–15 (2001)Google Scholar
  3. 3.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – a survey. BIT 25(1), 2–23 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)Google Scholar
  5. 5.
    Cabello, S., Mohar, B.: Finding shortest non-separating and non-contractible cycles for topologically embedded graphs. Discrete and Computational Geometry 37, 213–235 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: The monadic second-order logic of graphs: definable sets of finite graphs. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 30–53. Springer, Heidelberg (1989)Google Scholar
  7. 7.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The Bidimensional Theory of Bounded-Genus Graphs. SIAM Journal on Discrete Mathematics 20(2), 357–371 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 15–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming in H-minor-free graphs. In: Proc. of the 19th annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 631–640 (2008)Google Scholar
  12. 12.
    Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Flajolet, F., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2008)Google Scholar
  14. 14.
    Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Mathematics 204(1), 203–229 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fomin, F.V., Thilikos, D.M.: Fast Parameterized Algorithms for Graphs on Surfaces: Linear Kernel and Exponential Speed-Up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Mohar, B., Thomassen, C.: Graphs on surfaces. John Hopk. Univ. Press, Baltimore (2001)zbMATHGoogle Scholar
  17. 17.
    Robertson, N., Seymour, P.: Graph minors. XII. Distance on a surface. J. Combin. Theory Series B 64, 240–272 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for Graphs on Surfaces. Research Report RR-7166, INRIA (2009),
  19. 19.
    Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics 10(4), 529–550 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juanjo Rué
    • 1
  • Ignasi Sau
    • 2
  • Dimitrios M. Thilikos
    • 3
  1. 1.Laboratorie d’InformatiqueÉcole PolytechniquePalaiseau-CedexFrance
  2. 2.Department of Computer ScienceTechnionHaifaIsrael
  3. 3.Dept. of MathematicsNational and Kapodistrian University of AthensGreece

Personalised recommendations