Max-min Online Allocations with a Reordering Buffer

  • Leah Epstein
  • Asaf Levin
  • Rob van Stee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6198)


We consider online scheduling so as to maximize the minimum load, using a reordering buffer which can store some of the jobs before they are assigned irrevocably to machines. For m identical machines, we show an upper bound of H m − 1 + 1 for a buffer of size m − 1. A competitive ratio below H m is not possible with any finite buffer size, and it requires a buffer of size \(\tilde\Omega(m)\) to get a ratio of O(logm). For uniformly related machines, we show that a buffer of size m + 1 is sufficient to get an approximation ratio of m, which is best possible for any finite sized buffer. Finally, for the restricted assignment model, we show lower bounds identical to those of uniformly related machines, but using different constructions. In addition, we design an algorithm of approximation ratio O(m) which uses a finite sized buffer. We give tight bounds for two machines in all the three models.

These results sharply contrast to the (previously known) results which can be achieved without the usage of a reordering buffer, where it is not possible to get a ratio below an approximation ratio of m already for identical machines, and it is impossible to obtain an algorithm of finite approximation ratio in the other two models, even for m = 2. Our results strengthen the previous conclusion that a reordering buffer is a powerful tool and it allows a significant decrease in the competitive ratio of online algorithms for scheduling problems. Another interesting aspect of our results is that our algorithm for identical machines imitates the behavior of the greedy algorithm on (a specific set of) related machines, whereas our algorithm for related machines completely ignores the speeds until the end, and then only uses the relative order of the speeds.


Approximation Ratio Competitive Ratio Online Algorithm Goal Function Identical Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Better bounds for online scheduling. SIAM Journal on Computing 29(2), 459–473 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. In: Proc. 39th Symp. Theory of Computing (STOC), pp. 114–121 (2007)Google Scholar
  3. 3.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with applications to machine scheduling and virtual circuit routing. Journal of the ACM 44(3), 486–504 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Azar, Y., Epstein, L.: On-line machine covering. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 23–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. Journal of Algorithms 18(2), 221–237 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 31–40 (2006)Google Scholar
  7. 7.
    Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. Journal of Algorithms 35, 108–121 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cai, S.-Y.: Semi-online machine covering. Asia-Pacific J. of Oper. Res. 24(3), 373–382 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chassid, O., Epstein, L.: The hierarchical model for load balancing on two machines. Journal of Combinatorial Optimization 15(4), 305–314 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, B., van Vliet, A., Woeginger, G.J.: An optimal algorithm for preemptive on-line scheduling. Operations Research Letters 18, 127–131 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Csirik, J., Kellerer, H., Woeginger, G.: The exact LPT-bound for maximizing the minimum completion time. Operations Research Letters 11, 281–287 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Deuermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize the minimum processor finish time in a multiprocessor system. SIAM Journal on Discrete Mathematics 3(2), 190–196 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dósa, G., Epstein, L.: Online scheduling with a buffer on related machines. Journal of Combinatorial Optimization. (to appear), doi:10.1007/s10878-008-9200-yGoogle Scholar
  14. 14.
    Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 456–467. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Ebenlendr, T., Noga, J., Sgall, J., Woeginger, G.J.: A note on semi-online machine covering. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 110–118. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 48th Symp. Foundations of Computer Science (FOCS), pp. 603–612 (2008)Google Scholar
  17. 17.
    Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39(1), 43–57 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Friesen, D.K., Deuermeyer, B.L.: Analysis of greedy solutions for a replacement part sequencing problem. Mathematics of Operations Reasearch 6(1), 74–87 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 564–565 (2000)Google Scholar
  20. 20.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Sys. Tech. J. 45, 1563–1581 (1966)Google Scholar
  21. 21.
    Jiang, Y., Tan, Z., He, Y.: Preemptive machine covering on parallel machines. Journal of Combinatorial Optimization 10(4), 345–363 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi online algorithms for the partition problem. Operations Research Letters 21, 235–242 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tan, Z., Wu, Y.: Optimal semi-online algorithms for machine covering. Theoretical Computer Science 372(1), 69–80 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Woeginger, G.J.: A polynomial time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters 20(4), 149–154 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zhang, G.: A simple semi on-line algorithm for P2//C max with a buffer. Information Processing Letters 61, 145–148 (1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Leah Epstein
    • 1
  • Asaf Levin
    • 2
  • Rob van Stee
    • 3
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Faculty of Industrial Engineering and ManagementThe TechnionHaifaIsrael
  3. 3.Department of Computer ScienceUniversity of KarlsruheKarlsruheGermany

Personalised recommendations