Scalably Scheduling Power-Heterogeneous Processors

  • Anupam Gupta
  • Ravishankar Krishnaswamy
  • Kirk Pruhs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6198)


We show that a natural online algorithm for scheduling jobs on a heterogeneous multiprocessor, with arbitrary power functions, is scalable for the objective function of weighted flow plus energy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Transactions on Algorithms 3(4) (2007)Google Scholar
  2. 2.
    Andrew, L.L., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary power functions. SIGMETRICS Performance Evaluation Review 37(2), 39–41 (2009)CrossRefGoogle Scholar
  3. 3.
    Bansal, N., Chan, H.L.: Weighted flow time does not admit o(1)-competitive algorithms. In: SODA, pp. 1238–1244 (2009)Google Scholar
  4. 4.
    Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling for speed bounded processors. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 409–420. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function. In: SODA, pp. 693–701 (2009)Google Scholar
  6. 6.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM Journal on Computing 39(4) (2009)Google Scholar
  7. 7.
    Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted flow time and deadline scheduling. J. Discrete Algorithms 4(3), 339–352 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bower, F.A., Sorin, D.J., Cox, L.P.: The impact of dynamically heterogeneous multicore processors on thread scheduling. IEEE Micro 28(3), 17–25 (2008)CrossRefGoogle Scholar
  9. 9.
    Chadha, J.S., Garg, N., Kumar, A., Muralidhara, V.N.: A competitive algorithm for minimizing weighted flow time on unrelatedmachines with speed augmentation. In: STOC, pp. 679–684 (2009)Google Scholar
  10. 10.
    Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. In: STACS, pp. 255–264 (2009)Google Scholar
  11. 11.
    Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: SPAA 2009: Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures, pp. 11–18. ACM, New York (2009)CrossRefGoogle Scholar
  12. 12.
    Kumar, R., Tullsen, D.M., Jouppi, N.P.: Core architecture optimization for heterogeneous chip multiprocessors. In: International conference on parallel architectures and compilation techniques, pp. 23–32. ACM, New York (2006)Google Scholar
  13. 13.
    Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-isa heterogeneous multi-core architectures for multithreaded workload performance. SIGARCH Computer Architecture News 32(2), 64 (2004)CrossRefGoogle Scholar
  14. 14.
    Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Competitive non-migratory scheduling for flow time and energy. In: SPAA, pp. 256–264 (2008)Google Scholar
  15. 15.
    Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Speed scaling functions for flow time scheduling based on active job count. In: European Symposium on Algorithms, pp. 647–659 (2008)Google Scholar
  16. 16.
    Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. Journal of Computer and Systems Sciences 73(6), 875–891 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Merritt, R.: CPU designers debate multi-core future. EE Times (February 2008)Google Scholar
  18. 18.
    Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M., Ayguade, E.: Performance, power efficiency and scalability of asymmetric cluster chip multiprocessors. IEEE Computer Architecture Letters 5(1), 4 (2006)CrossRefGoogle Scholar
  19. 19.
    Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Performance Evaluation Review 34(4), 52–58 (2007)CrossRefGoogle Scholar
  20. 20.
    Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook on Scheduling, CRC Press, Boca Raton (2004)Google Scholar
  21. 21.
    Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your erg. ACM Transactions on Algorithms 4(3) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anupam Gupta
    • 1
  • Ravishankar Krishnaswamy
    • 1
  • Kirk Pruhs
    • 2
  1. 1.Computer Science Dept.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Computer Science Dept.University of PittsburghPittsburghUSA

Personalised recommendations