Thresholded Covering Algorithms for Robust and Max-min Optimization

  • Anupam Gupta
  • Viswanath Nagarajan
  • R. Ravi
Conference paper

DOI: 10.1007/978-3-642-14165-2_23

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6198)
Cite this paper as:
Gupta A., Nagarajan V., Ravi R. (2010) Thresholded Covering Algorithms for Robust and Max-min Optimization. In: Abramsky S., Gavoille C., Kirchner C., Meyer auf der Heide F., Spirakis P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg

Abstract

The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow and require coverage, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case covering cost (summed over both days) is minimized? We consider the k-robust model [6,15] where the possible scenarios tomorrow are given by all demand-subsets of size k.

We present a simple and intuitive template for k-robust problems. This gives improved approximation algorithms for the k-robust Steiner tree and set cover problems, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. As a by-product of our techniques, we also get approximation algorithms for k-max-min problems of the form: “given a covering problem instance, which k of the elements are costliest to cover?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anupam Gupta
    • 1
  • Viswanath Nagarajan
    • 2
  • R. Ravi
    • 3
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.IBM T.J. Watson Research CenterUSA
  3. 3.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations