Advertisement

Model Checking Succinct and Parametric One-Counter Automata

  • Stefan Göller
  • Christoph Haase
  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)

Abstract

We investigate the decidability and complexity of various model checking problems over one-counter automata. More specifically, we consider succinct one-counter automata, in which additive updates are encoded in binary, as well as parametric one-counter automata, in which additive updates may be given as unspecified parameters. We fully determine the complexity of model checking these automata against CTL, LTL, and modal μ-calculus specifications.

Keywords

Model Check Truth Assignment Model Check Problem Counter Machine Logarithmic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics, vol. 146. North-Holland, Amsterdam (2001)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibility. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Cai, J.-Y., Furst, M.: PSPACE survives constant-width bottlenecks. International Journal of Foundations of Computer Science 2(1), 67–76 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chitic, C., Rosu, D.: On validation of xml streams using finite state machines. In: Proc. of WebDB, pp. 85–90. ACM, New York (2004)CrossRefGoogle Scholar
  7. 7.
    Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform \(\rm NC\sp 1\). Theoretical Informatics and Applications. Informatique Théorique et Applications 35(3), 259–275 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. Journal of Logic and Computation 19(6), 1541–1575 (2009)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Göller, S., Haase, C., Ouaknine, J., Worrel, J.: Model checking succinct and parametric one-counter automata. Technical report, University of Bremen (2010), http://www.informatik.uni-bremen.de/tdki/research/papers/succ.pdf
  11. 11.
    Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. Technical report, arXiv.org (2009), http://arxiv.org/abs/0909.1102
  12. 12.
    Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. In: Proc. of STACS, IFIB Schloss Dagstuhl (2010)Google Scholar
  13. 13.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in parametric one-counter automata (2010) (submitted), http://www.comlab.ox.ac.uk/files/2833/iandc.pdf
  14. 14.
    Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On the power of polynomial time bit-reductions. In: Proc. of CoCo, pp. 200–207. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  15. 15.
    Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 313–324. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and applications. Theor. Comput. Sci. 352(1), 342–346 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-checking and model-checking of one-counter automata. Information Computation 188(1), 1–19 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics. Second Series 74, 437–455 (1961)MathSciNetGoogle Scholar
  20. 20.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  21. 21.
    Serre, O.: Parity games played on transition graphs of one-counter processes. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Vollmer, H.: A generalized quantifier concept in computational complexity theory. Technical report, arXiv.org (1998), http://arxiv.org/abs/cs.CC/9809115

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefan Göller
    • 1
  • Christoph Haase
    • 2
  • Joël Ouaknine
    • 2
  • James Worrell
    • 2
  1. 1.Institut für InformatikUniversität BremenGermany
  2. 2.Computing LaboratoryOxford UniversityUK

Personalised recommendations