Model Checking Succinct and Parametric One-Counter Automata

  • Stefan Göller
  • Christoph Haase
  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)

Abstract

We investigate the decidability and complexity of various model checking problems over one-counter automata. More specifically, we consider succinct one-counter automata, in which additive updates are encoded in binary, as well as parametric one-counter automata, in which additive updates may be given as unspecified parameters. We fully determine the complexity of model checking these automata against CTL, LTL, and modal μ-calculus specifications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics, vol. 146. North-Holland, Amsterdam (2001)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibility. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Cai, J.-Y., Furst, M.: PSPACE survives constant-width bottlenecks. International Journal of Foundations of Computer Science 2(1), 67–76 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chitic, C., Rosu, D.: On validation of xml streams using finite state machines. In: Proc. of WebDB, pp. 85–90. ACM, New York (2004)CrossRefGoogle Scholar
  7. 7.
    Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform \(\rm NC\sp 1\). Theoretical Informatics and Applications. Informatique Théorique et Applications 35(3), 259–275 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. Journal of Logic and Computation 19(6), 1541–1575 (2009)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Göller, S., Haase, C., Ouaknine, J., Worrel, J.: Model checking succinct and parametric one-counter automata. Technical report, University of Bremen (2010), http://www.informatik.uni-bremen.de/tdki/research/papers/succ.pdf
  11. 11.
    Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. Technical report, arXiv.org (2009), http://arxiv.org/abs/0909.1102
  12. 12.
    Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. In: Proc. of STACS, IFIB Schloss Dagstuhl (2010)Google Scholar
  13. 13.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in parametric one-counter automata (2010) (submitted), http://www.comlab.ox.ac.uk/files/2833/iandc.pdf
  14. 14.
    Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On the power of polynomial time bit-reductions. In: Proc. of CoCo, pp. 200–207. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  15. 15.
    Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 313–324. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and applications. Theor. Comput. Sci. 352(1), 342–346 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-checking and model-checking of one-counter automata. Information Computation 188(1), 1–19 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics. Second Series 74, 437–455 (1961)MathSciNetGoogle Scholar
  20. 20.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  21. 21.
    Serre, O.: Parity games played on transition graphs of one-counter processes. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Vollmer, H.: A generalized quantifier concept in computational complexity theory. Technical report, arXiv.org (1998), http://arxiv.org/abs/cs.CC/9809115

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefan Göller
    • 1
  • Christoph Haase
    • 2
  • Joël Ouaknine
    • 2
  • James Worrell
    • 2
  1. 1.Institut für InformatikUniversität BremenGermany
  2. 2.Computing LaboratoryOxford UniversityUK

Personalised recommendations