On the Expressiveness of Polyadic and Synchronous Communication in Higher-Order Process Calculi

  • Ivan Lanese
  • Jorge A. Pérez
  • Davide Sangiorgi
  • Alan Schmitt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)


Higher-order process calculi are calculi in which processes can be communicated. We study the expressiveness of strictly higher-order process calculi, and focus on two issues well-understood for first-order calculi but not in the higher-order setting: synchronous vs. asynchronous communication and polyadic vs. monadic communication. First, and similarly to the first-order setting, synchronous process-passing is shown to be encodable into asynchronous process-passing. Then, the absence of name-passing is shown to induce a hierarchy of higher-order process calculi based on the arity of polyadic communication, thus revealing a striking point of contrast with respect to first-order calculi. Finally, the passing of abstractions (i.e., functions from processes to processes) is shown to be more expressive than process-passing alone.


Output Action Internal Action Expressive Power Label Transition System Asynchronous Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-calculi. Mathematical Structures in Computer Science 13(5), 685–719 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Nestmann, U.: What is a good encoding of guarded choice? Inf. Comput. 156(1-2), 287–319 (2000); A preliminary version appeared in EXPRESS (1997)Google Scholar
  3. 3.
    Cacciagrano, D., Corradini, F., Palamidessi, C.: Separation of synchronous and asynchronous communication via testing. Theor. Comput. Sci. 386(3), 218–235 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Boudol, G.: Asynchrony and the π-calculus (note). Technical report, Rapport de Recherche 1702, INRIA, Sophia-Antipolis (1992)Google Scholar
  5. 5.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Milner, R.: The Polyadic pi-Calculus: A Tutorial. Technical Report ECS-LFCS-91-180, University of Edinburgh (1991)Google Scholar
  7. 7.
    Quaglia, P., Walker, D.: Types and full abstraction for polyadic pi-calculus. Inf. Comput. 200(2), 215–246 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. Theor. Comput. Sci. 167(2), 235–274 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gorla, D.: Towards a unified approach to encodability and separation results for process calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 492–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Pérez, J.A.: Higher-Order Concurrency: Expressiveness and Decidability Results. PhD thesis, University of Bologna (2010) Draft in,
  12. 12.
    Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of higher-order process calculi. In: Proc. of LICS 2008, pp. 145–155. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  13. 13.
    Di Giusto, C., Pérez, J.A., Zavattaro, G.: On the expressiveness of forwarding in higher-order communication. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 155–169. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)Google Scholar
  15. 15.
    Lanese, I.: Concurrent and located synchronizations in pi-calculus. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 388–399. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Amadio, R.M.: On the reduction of Chocs bisimulation to π-calculus bisimulation. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 112–126. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ivan Lanese
    • 1
  • Jorge A. Pérez
    • 2
  • Davide Sangiorgi
    • 1
  • Alan Schmitt
    • 3
  1. 1.Laboratory FOCUS (University of Bologna/INRIA) 
  2. 2.CITI - Department of Computer Science, FCT New University of Lisbon 
  3. 3.INRIA 

Personalised recommendations