Advertisement

Towards a Theory of Time-Bounded Verification

  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)

Abstract

We propose a theory of time-bounded verification for real-time systems, in which verification queries are phrased over time intervals of fixed, bounded duration. We argue that this theory is both pertinent, in that it is fully adequate to handle a large proportion of ‘real-world’ real-time systems and specifications; and effective, in that the restriction to bounded time domains reclaims as decidable several of the key decision problems of unbounded real-time verification. Finally, we discuss several directions of ongoing and future work.

Keywords

Model Check IEEE Computer Society Temporal Logic Regular Expression Linear Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126 (1994)Google Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1) (1996)Google Scholar
  4. 4.
    Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class of timed automata. Theor. Comput. Sci. 211 (1999)Google Scholar
  5. 5.
    Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, Springer, Heidelberg (1991)Google Scholar
  6. 6.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comput. 104(1) (1993)Google Scholar
  7. 7.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1) (1994)Google Scholar
  8. 8.
    Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2) (2002)Google Scholar
  10. 10.
    Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. Theor. Comput. Sci. 345(1) (2005)Google Scholar
  11. 11.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  13. 13.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: On expressiveness and complexity in real-time model checking. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 124–135. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Bošnački, D.: Digitization of timed automata. In: Proceedings of FMICS (1999)Google Scholar
  15. 15.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1) (1981)Google Scholar
  16. 16.
    Dickhöfer, M., Wilke, T.: Timed alternating tree automata: The automata-theoretic solution to the TCTL model checking problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: Proceedings of FOCS. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  18. 18.
    Emmi, M., Majumdar, R.: Decision problems for the verification of real-time software. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal basis of fairness. In: Proceedings of POPL. ACM Press, New York (1980)Google Scholar
  20. 20.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Henzinger, T.A.: The Temporal Specification and Verification of Real-Time Systems. PhD thesis, Stanford University, Technical Report STAN-CS-91-1380 (1991)Google Scholar
  22. 22.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623. Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 145. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 580. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Herrmann, P.: Timed automata and recognizability. Inf. Process. Lett. 65 (1998)Google Scholar
  26. 26.
    Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam. Inform. 62(1) (2004)Google Scholar
  27. 27.
    Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. Logical Methods in Computer Science 3(1) (2007)Google Scholar
  28. 28.
    Jenkins, M., Ouaknine, J., Rabinovich, A., Worrell, J.: Alternating timed automata over bounded time. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (2010)Google Scholar
  29. 29.
    Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California (1968)Google Scholar
  30. 30.
    Katoen, J.-P., Zapreev, I.S.: Safe on-the-fly steady-state detection for time-bounded reachability. In: Proceedings of QEST. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  31. 31.
    Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O Automata: A mathematical framework for modeling and analyzing real-time systems. In: Proceedings of RTSS. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  32. 32.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4) (1990)Google Scholar
  33. 33.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Log. 2(3) (2001)Google Scholar
  34. 34.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput. Log. 9(2) (2008)Google Scholar
  36. 36.
    Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, p. 521. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Lynch, N.A., Attiya, H.: Using mappings to prove timing properties. Distributed Computing 6(2) (1992)Google Scholar
  38. 38.
    Ostroff, J.: Temporal Logic of Real-Time Systems. Research Studies Press (1990)Google Scholar
  39. 39.
    Ouaknine, J.: Digitisation and full abstraction for dense-time model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 37. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 - Concurrency Theory. LNCS, vol. 5710, Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  42. 42.
    Ouaknine, J., Worrell, J.: Universality and language inclusion for open and closed timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 375–388. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  43. 43.
    Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing a decidability gap. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  44. 44.
    Ouaknine, J., Worrell, J.: On the decidability of Metric Temporal Logic. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  45. 45.
    Ouaknine, J., Worrell, J.: Safety Metric Temporal Logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logical Methods in Computer Science 3(1) (2007)Google Scholar
  47. 47.
    Raskin, J.-F.: Logics, Automata and Classical Theories for Deciding Real Time. PhD thesis, University of Namur (1999)Google Scholar
  48. 48.
    Raskin, J.-F., Schobbens, P.-Y.: State-clock logic: A decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  49. 49.
    Roux, O., Rusu, V.: Verifying time-bounded properties for ELECTRE reactive programs with stopwatch automata. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, Springer, Heidelberg (1994)Google Scholar
  50. 50.
    Taşiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of timed systems. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)Google Scholar
  51. 51.
    Trakhtenbrot, B.A.: Origins and metamorphoses of the trinity: Logic, nets, automata. In: Proceedings of LICS. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  52. 52.
    Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  53. 53.
    Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2009)Google Scholar
  54. 54.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Computing LaboratoryOxford UniversityUK

Personalised recommendations