Rewriting Measurement-Based Quantum Computations with Generalised Flow

  • Ross Duncan
  • Simon Perdrix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)


We present a method for verifying measurement-based quantum computations, by producing a quantum circuit equivalent to a given deterministic measurement pattern. We define a diagrammatic presentation of the pattern, and produce a circuit via a rewriting strategy based on the generalised flow of the pattern. Unlike other methods for translating measurement patterns with generalised flow to circuits, this method uses neither ancilla qubits nor acausal loops.


Quantum Circuit Open Graph Monoidal Functor Admissible Rule Symmetric Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  2. 2.
    Anne Broadbent, J.F., Kashefi, E.: Universal blind quantum computation. In: Proc. FoCS 2009 (2009)Google Scholar
  3. 3.
    Browne, D.E., Kashefi, E., Perdrix, S.: Computational depth complexity of measurement-based quantum computation (2009) preprint: arXiv:0909.4673Google Scholar
  4. 4.
    Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. J. ACM 54(2) (2007)Google Scholar
  6. 6.
    Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74(052310) (2006)Google Scholar
  7. 7.
    Browne, D., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. 9 (2007)Google Scholar
  8. 8.
    Duncan, R.: Verifying the measurement calculus by rewriting. In: DCM 2007 (2007) (Oral presentation)Google Scholar
  9. 9.
    Kashefi, E.: Lost in translation. In: Proc. DCM 2007 (2007)Google Scholar
  10. 10.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc. LiCS 2004, pp. 415–425. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  11. 11.
    Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L.H., Lomonaco Jr., S.J. (eds.) The Mathematics of Quantum Computation and Technology. Taylor and Francis, Abington (2007)Google Scholar
  12. 12.
    Coecke, B., Paquette, E.O.: POVMs and Naimark’s theorem without sums. In: Proceedings of QPL 2006 (2006)Google Scholar
  13. 13.
    Dixon, L., Duncan, R., Kissinger, A.: Quantomatic. Project home page,
  14. 14.
    Duncan, R.: Types for Quantum Computing. PhD thesis, Oxford University (2006)Google Scholar
  15. 15.
    Dixon, L., Duncan, R.: Graphical reasoning in compact closed categories for quantum computation. Ann. Math. Artif. Intel. 56(1), 23–42 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Duncan, R., Perdrix, S.: Graph states and the necessity of Euler decomposition. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 167–177. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Kissinger, A.: Graph rewrite systems for complementary classical structures in \(\dag\)-symmetric monoidal categories. Master’s thesis, Oxford University (2008)Google Scholar
  18. 18.
    Lack, S.: Composing PROPs. Theor. Appl. Categ. 13(9), 147–163 (2004)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ross Duncan
    • 1
  • Simon Perdrix
    • 2
  1. 1.Oxford University Computing Laboratory 
  2. 2.CNRS, LIG, Université de Grenoble 

Personalised recommendations