Advertisement

Noetherian Spaces in Verification

  • Jean Goubault-Larrecq
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)

Abstract

Noetherian spaces are a topological concept that generalizes well quasi-orderings. We explore applications to infinite-state verification problems, and show how this stimulated the search for infinite procedures à la Karp-Miller.

Keywords

Noetherian Ring Zariski Topology Counter Machine Downward Closure Polynomial Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Yih-Kuen, T.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160(1/2), 109–127 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reachability analysis for verification of lossy channel systems. Formal Methods in System Design 25(1), 39–65 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Proc. 8th IEEE Int. Symp. Logic in Computer Science (LICS 1993), pp. 160–170 (1993)Google Scholar
  4. 4.
    Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state systems. Theoretical Computer Science 256(1-2), 145–167 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford University Press, Oxford (1994)Google Scholar
  7. 7.
    Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via behavioural types. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 31–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Adams, W.W., Loustaunau, P.: An introduction to Gröbner bases. Graduate Studies in Mathematics, vol. 3, 289 pages. American Mathematical Society, Providence (1994)zbMATHGoogle Scholar
  9. 9.
    Buchberger, B., Loos, R.: Algebraic simplification. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds.) Computer Algebra, Symbolic and Algebraic Computation. Springer, Heidelberg (1982-1983)Google Scholar
  10. 10.
    Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Information and Computation 124(1), 20–31 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    de Groote, P., Guillaume, B., Salvati, S.: Vector addition tree automata. In: Proc. 19th IEEE Int. Symp. Logics in Computer Science, pp. 64–73 (2004)Google Scholar
  12. 12.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions. In: Albers, S., Marion, J.-Y. (eds.) Proc. STACS 2009, Freiburg, Germany, pp. 433–444 (2009)Google Scholar
  14. 14.
    Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: Complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing Petri net extensions. Information and Computation 195(1-2), 1–29 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check: New algorithms for the coverability problem of WSTS. J. Comp. Sys. Sciences 72(1), 180–203 (2006)zbMATHCrossRefGoogle Scholar
  18. 18.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, Cambridge (2003)Google Scholar
  19. 19.
    Goubault-Larrecq, J.: On Noetherian spaces. In: Proc. 22nd IEEE Int. Symp. Logic in Computer Science (LICS 2007), Wrocław, Poland, pp. 453–462 (2007)Google Scholar
  20. 20.
    Grothendieck, A.: Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): I. Le langage des schémas, vol. 4, pp. 5–228. Publications mathématiques de l’I.H.É.S (1960)Google Scholar
  21. 21.
    Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems. ACM Trans. Computational Logic 6(1), 1–32 (2005)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 2(7), 326–336 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theoretical Computer Science 8, 135–159 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society 95(2), 210–225 (1960)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Lazič, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens which carry data. Fundamenta Informaticae 88(3), 251–274 (2008)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Lombardi, H., Perdry, H.: The Buchberger algorithm as a tool for ideal theory of polynomial rings in constructive mathematics. In: Gröbner Bases and Applications (Proc. of the Conference 33 Years of Gröbner Bases). London Mathematical Society Lecture Notes, vol. 251, pp. 393–407. Cambridge University Press, Cambridge (1998)Google Scholar
  28. 28.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Mathematics, Second Series 74(3), 437–455 (1961)MathSciNetGoogle Scholar
  29. 29.
    Müller-Olm, M., Seidl, H.: Polynomial constants are decidable. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Murthy, C.R., Russell, J.R.: A constructive proof of Higman’s lemma. In: Proc. 5th IEEE Symposium on Logic in Computer Science (LICS 1990), pp. 257–267 (1990)Google Scholar
  31. 31.
    Nash-Williams, C.S.-J.A.: On better-quasi-ordering transfinite sequences. In: Proc. Cambridge Philosophical Society, vol. 64, pp. 273–290 (1968)Google Scholar
  32. 32.
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Rabinowitch, S.: Zum Hilbertschen Nullstellensatz. Mathematische Annalen 102, 520 (1929)CrossRefGoogle Scholar
  34. 34.
    Reutenauer, C.: Aspects Mathématiques des Réseaux de Petri. Masson (1993)Google Scholar
  35. 35.
    Smyth, M.: Effectively given domains. Theoretical Computer Science 5, 257–274 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Taylor, P.: Computably based locally compact spaces. Logical Methods in Computer Science 2(1) (2006)Google Scholar
  37. 37.
    Verma, K.N., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of VASS. Discrete Mathematics & Theoretical Computer Science 7(1), 217–230 (2005)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean Goubault-Larrecq
    • 1
  1. 1.Preuves, Programmes et Systèmes, UMR 7126, CNRS and University Paris Diderot, LSV, ENS Cachan, CNRS, INRIA 

Personalised recommendations