On Erasing Productions in Random Context Grammars

  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6199)


Three open questions in the theory of regulated rewriting are addressed. The first is whether every permitting random context grammar has a non-erasing equivalent. The second asks whether the same is true for matrix grammars without appearance checking. The third concerns whether permitting random context grammars have the same generative capacity as matrix grammars without appearance checking.

The main result is a positive answer to the first question. For the other two, conjectures are presented. It is then deduced from the main result that at least one of the two holds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bordihn, H., Holzer, M.: Random context in regulated rewriting versus cooperating distributed grammar systems. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 125–136. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Dassow, J.: Grammars with regulated rewriting. In: Martín-Vide, C., Mitrana, V., Păun, G. (eds.) Formal Languages and Applications, pp. 249–273. Springer, Berlin (2004)Google Scholar
  3. 3.
    Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer, Berlin (1989)Google Scholar
  4. 4.
    Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 101–154. Springer, Berlin (1997)Google Scholar
  5. 5.
    Ewert, S., van der Walt, A.: A pumping lemma for random permitting context languages. Theoretical Computer Science 270, 959–967 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of matrix grammars. Acta Informatica 31(8), 719–728 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Salomaa, A.: Formal Languages. Academic Press, New York (1973)zbMATHGoogle Scholar
  8. 8.
    van der Walt, A.: Random context languages. In: Information Processing 71, Proceedings of the IFIP Congress 71, Foundations and Systems, vol. 1, pp. 66–68. North-Holland, Amsterdam (1972)Google Scholar
  9. 9.
    Zetzsche, G.: Erasing in Petri Net Languages and Matrix Grammars. In: Diekert, V., Nowotka, D. (eds.) DLT 2009, Stuttgart, Germany, June 30–July 3. LNCS, vol. 5583, pp. 490–501. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Georg Zetzsche
    • 1
  1. 1.Department InformatikUniversität HamburgHamburg

Personalised recommendations