Advertisement

Artificial Evolution for 3D PET Reconstruction

  • Franck P. Vidal
  • Delphine Lazaro-Ponthus
  • Samuel Legoupil
  • Jean Louchet
  • Évelyne Lutton
  • Jean-Marie Rocchisani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5975)

Abstract

This paper presents a method to take advantage of artificial evolution in positron emission tomography reconstruction. This imaging technique produces datasets that correspond to the concentration of positron emitters through the patient. Fully 3D tomographic reconstruction requires high computing power and leads to many challenges. Our aim is to reduce the computing cost and produce datasets while retaining the required quality. Our method is based on a coevolution strategy (also called Parisian evolution) named “fly algorithm”. Each fly represents a point of the space and acts as a positron emitter. The final population of flies corresponds to the reconstructed data. Using “marginal evaluation”, the fly’s fitness is the positive or negative contribution of this fly to the performance of the population. This is also used to skip the relatively costly step of selection and simplify the evolutionary algorithm.

Keywords

Positron Emission Tomography Positron Emission Tomography Imaging Compton Scattering Bright Area Tomographic Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badawi, R.D.: Nuclear medicine. Phys. Educ. 36(6), 452–459 (2001)CrossRefGoogle Scholar
  2. 2.
    Bosman, P.A.N., Alderliesten, T.: Evolutionary algorithms for medical simulations: a case study in minimally-invasive vascular interventions. In: Proceedings of the 2005 workshops on Genetic and evolutionary computation (GECCO ’05), pp. 125–132 (2005)Google Scholar
  3. 3.
    Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive segmentation of 3D medical images. Image Vision Comput. 17(12), 881–895 (1999)CrossRefGoogle Scholar
  5. 5.
    Fahey, F.H.: Data acquisition in PET imaging. J. Nucl. Med. Technol. 30(2), 39–49 (2002)Google Scholar
  6. 6.
    Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)CrossRefGoogle Scholar
  7. 7.
    Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proceedings of IEEE 91(10), 1588–1611 (2003)CrossRefGoogle Scholar
  8. 8.
    Louchet, J.: Stereo analysis using individual evolution strategy. In: Proceedings of the International Conference on Pattern Recognition (ICPR ’00), p. 1908 (2000)Google Scholar
  9. 9.
    Michael, G.: X-ray computed tomography. Phys. Educ. 36(6), 442–451 (2001)CrossRefGoogle Scholar
  10. 10.
    Olague, G., Cagnoni, S., Lutton, E.: Introduction to the special issue on evolutionary computer vision and image understanding. Pattern Recognit. Lett. 27(11), 1161–1163 (2006)CrossRefGoogle Scholar
  11. 11.
    Pea-Reyes, C., Sipper, M.: Evolutionary computation in medicine: an overview. Artif. Intell. Med. 19(1), 1–23 (2000)CrossRefGoogle Scholar
  12. 12.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)CrossRefGoogle Scholar
  13. 13.
    Silicon Graphics, Inc.: Standard template library programmer’s guide, http://www.sgi.com/tech/stl/
  14. 14.
    Townsend, D.W.: Physical principles and technology of clinical PET imaging. Ann. Acad. Med. Singap. 33(2), 133–145 (2004)Google Scholar
  15. 15.
    Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification of mammograms. In: Giacobini, M., et al. (eds.) EvoCOMNET. LNCS, vol. 5484, pp. 405–413. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Watt, A.: 3D Computer Graphics, 3rd edn. Addison-Wesley, Reading (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Franck P. Vidal
    • 1
    • 2
  • Delphine Lazaro-Ponthus
    • 2
  • Samuel Legoupil
    • 2
  • Jean Louchet
    • 1
    • 3
  • Évelyne Lutton
    • 1
  • Jean-Marie Rocchisani
    • 1
    • 4
  1. 1.INRIA Saclay - Île-de-France/APISParc Orsay UniversitéOrsay CedexFrance
  2. 2.CEALIST, SaclayGif-sur-YvetteFrance
  3. 3.ArteniaChâtillonFrance
  4. 4.UFR SMBH & Avicenne hospitalParis XIII UniversityBobignyFrance

Personalised recommendations