Advertisement

Semantic Similarity Based Crossover in GP: The Case for Real-Valued Function Regression

  • Nguyen Quang Uy
  • Michael O’Neill
  • Nguyen Xuan Hoai
  • Bob Mckay
  • Edgar Galván-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5975)

Abstract

In this paper we propose a new method for implementing the cross-over operator in Genetic Programming (GP) called Semantic Similarity based Crossover (SSC). This new operator is inspired by Semantic Aware Crossover (SAC) [20]. SSC extends SAC by adding semantics to control the change of the semantics of the individuals during the evolutionary process. The new crossover operator is then tested on a family of symbolic regression problems and compared with SAC as well as Standard Crossover (SC). The results from the experiments show that the change of the semantics (fitness) in the new SSC is smoother compared to SAC and SC. This leads to performance improvement in terms of percentage of successful runs and mean best fitness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 111–116. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  2. 2.
    Cleary, R., O’Neill, M.: An attribute grammar decoder for the 01 multi-constrained knapsack problem. In: Proceedings of the Evolutionary Computation in Combinatorial Optimization, April 2005, pp. 34–45. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    de la Cruz Echeandía, M., de la Puente, A.O., Alfonseca, M.: Attribute grammar evolution. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 182–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Deb, K., Beyer, H.G.: Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In: Proceedings of the Genetic and Evolutionary Computation Conference, July 1999, pp. 172–179. Morgan Kaufmann, San Francisco (1999)Google Scholar
  5. 5.
    Gottlieb, J., Raidl, G.: The effects of locality on the dynamics of decoder-based evolutionary search. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 283–290. ACM, New York (2000)Google Scholar
  6. 6.
    Hengpraprohm, S., Chongstitvatana, P.: Selective crossover in genetic programming. In: Proceedings of ISCIT International Symposium on Communications and Information Technologies, November 2001, pp. 14–16 (2001)Google Scholar
  7. 7.
    Hoai, N.X., McKay, R., Essam, D.: Solving the symbolic regression problem with tree-adjunct grammar guided genetic programming: The comparative results. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1326–1331. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  8. 8.
    Ito, T., Iba, H., Sato, S.: Depth-dependent crossover for genetic programming. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, May 1998, pp. 775–780. IEEE Press, Los Alamitos (1998)CrossRefGoogle Scholar
  9. 9.
    Johnson, C.G.: Deriving genetic programming fitness properties by static analysis. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 299–308. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Johnson, C.: What can automatic programming learn from theoretical computer science. In: Proceedings of the UK Workshop on Computational Intelligence. University of Birmingham (2002)Google Scholar
  11. 11.
    Johnson, C.G.: Genetic programming with fitness based on model checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Katz, G., Peled, D.A.: Genetic programming and model checking: Synthesizing new mutual exclusion algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Katz, G., Peled, D.A.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, MA (1992)zbMATHGoogle Scholar
  15. 15.
    Majeed, H., Ryan, C.: A less destructive, context-aware crossover operator for GP. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 36–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Poli, R., Langdon, W.B.: Genetic programming with one-point crossover. In: Proceedings of Soft Computing in Engineering Design and Manufacturing Conference, June 1997, pp. 180–189. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Poli, R., McPhee, W.L.N.: A Field Guide to Genetic Programming (2008), http://lulu.com
  19. 19.
    Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic programming: The case for real-valued function regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Wong, M.L., Leung, K.S.: An induction system that learns programs in different programming languages using genetic programming and logic grammars. In: Proceedings of the 7th IEEE International Conference on Tools with Artificial Intelligence (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nguyen Quang Uy
    • 1
  • Michael O’Neill
    • 1
  • Nguyen Xuan Hoai
    • 2
  • Bob Mckay
    • 2
  • Edgar Galván-López
    • 1
  1. 1.Natural Computing Research & Applications GroupUniversity College DublinIreland
  2. 2.School of Computer Science and EngineeringSeoul National UniversityKorea

Personalised recommendations