I-Terms in Ordered Resolution and Superposition Calculi: Retrieving Lost Completeness

  • Hicham Bensaid
  • Ricardo Caferra
  • Nicolas Peltier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

Ordered resolution and superposition are the state-of-the-art proof procedures used in saturation-based theorem proving, for non equational and equational clause sets respectively. In this paper, we present extensions of these calculi that permit one to reason about formulae built from terms with integer exponents (or I-terms), a schematisation language allowing one to denote infinite sequences of iterated terms [8]. We prove that the ordered resolution calculus is still refutationally complete when applied on (non equational) clauses containing I-terms. In the equational case, we prove that the superposition calculus is not complete in the presence of I-terms and we devise a new inference rule, called H-superposition, that restores completeness.

Keywords

Automated reasoning term schematisation terms with integer exponents resolution and superposition calculi refutational completeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 3(4), 217–247 (1994)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson and Voronkov [19], pp. 19–99Google Scholar
  3. 3.
    Baumgartner, P.: Hyper Tableaux — The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Bensaid, H., Caferra, R., Peltier, N.: Towards systematic analysis of theorem provers search spaces: First steps. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 38–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bensaid, H., Caferra, R., Peltier, N.: Dei: A theorem prover for terms with integer exponents. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22. LNCS, vol. 5663, pp. 146–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Applied Logic Series, vol. 31. Kluwer Academic Publishers, Dordrecht (2004)MATHGoogle Scholar
  7. 7.
    Chen, H., Hsiang, J., Kong, H.-C.: On finite representations of infinite sequences of terms. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 100–114. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Comon, H.: On unification of terms with integer exponents. Mathematical Systems Theory 28(1), 67–88 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Farmer, W.M.: A unification algorithm for second-order monadic terms. Annals of Pure and Applied Logic 39(2), 131–174 (1988)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hermann, M., Galbavý, R.: Unification of infinite sets of terms schematized by primal grammars. Theor. Comput. Sci. 176(1-2), 111–158 (1997)MATHCrossRefGoogle Scholar
  11. 11.
    Hermant, O.: Resolution is cut-free. Journal of Automated Reasoning 44(3), 245–276 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Kirchner, H.: Schematization of infinite sets of rewrite rules generated by divergent completion processes. Theoretical Comput. Sci. 67(2-3), 303–332 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Leitsch, A.: The resolution calculus. In: Texts in Theoretical Computer Science. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson and Voronkov [19], pp. 371–443Google Scholar
  15. 15.
    Peltier, N.: Increasing the capabilities of model building by constraint solving with terms with integer exponents. Journal of Symbolic Computation 24, 59–101 (1997)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Peltier, N.: A General Method for Using Terms Schematizations in Automated Deduction. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 578–593. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Robinson, J.A.: Automatic deduction with hyperresolution. Intern. Journal of Computer Math. 1, 227–234 (1965)MATHGoogle Scholar
  18. 18.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12, 23–41 (1965)MATHMathSciNetGoogle Scholar
  19. 19.
    Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2. Elsevier/MIT Press (2001)Google Scholar
  20. 20.
    Salzer, G.: The unification of infinite sets of terms and its applications. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 409–420. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  21. 21.
    Schulz, S.: System Description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hicham Bensaid
    • 1
    • 2
  • Ricardo Caferra
    • 2
  • Nicolas Peltier
    • 2
  1. 1.INPT/LIGRabatMorocco
  2. 2.LIG, Grenoble INP/CNRSSaint Martin d’HèresFrance

Personalised recommendations