Evidence Algorithm and System for Automated Deduction: A Retrospective View

(In Honor of 40 Years of the EA Announcement)
  • Alexander Lyaletski
  • Konstantin Verchinine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

A research project aimed at the development of an automated theorem proving system was started in Kiev (Ukraine) in early 1960s. The mastermind of the project, Academician V.Glushkov, baptized it “Evidence Algorithm”, EA. The work on the project lasted, off and on, more than 40 years. In the framework of the project, the Russian and English versions of the System for Automated Deduction, SAD, were constructed. They may be already seen as powerful theorem-proving assistants. The paper gives a retrospective view to the whole history of the development of the EA and SAD. Theoretical and practical results obtained on the long way are systematized. No comparison with similar projects is made.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glushkov, V.M.: Intelligent machines and the mental activity of a human. Soviet School 2, 87–91 (1962) (in Russian)Google Scholar
  2. 2.
    Kaluzhnin, L.A.: On an information language for mathematics. In: Applied Linguistic and Machine Translation, pp. 21–29. Kiev University, Kiev (1962) (in Russian)Google Scholar
  3. 3.
    Kaluzhnin, L.A., Koroliuk, V.S.: Algorithms and mathematical machines. Soviet School, 283 p. (1964) (in Ukrainian)Google Scholar
  4. 4.
    Anufriev, F.V., Fedyurko, V.V., Letichevskii, A.A., Asel’derov, Z.M., Didukh, I.I.: An algorithm for proving theorems in Group theory. Cybernetics and System Analysis 2(1), 20–25 (1966)CrossRefGoogle Scholar
  5. 5.
    Anufriev, F.V.: An algorithm for proving theorems in Set theory. In: Theory of Automata, GIC, AS of UkrSSR, Kiev, vol. 4, pp. 3–24 (1967) (in Russian)Google Scholar
  6. 6.
    Glushkov, V.M., Pogrebinskii, S.B., Rabinovich, Z.L., Stognii, A.A.: Aspects of the development of digital computer architectures in the dependence of computer software systems. Cybernetics and System Analysis 3(5), 13–24 (1967)CrossRefGoogle Scholar
  7. 7.
    Asel’derov, Z.M.: Solving equations in free groups. In: Abstract of candidate dissertation in Physics and Mathematics, GIC, AS of UkrSSR, Kiev, 12 p. (1968) (in Russian) Google Scholar
  8. 8.
    Anufriyev, F.V.: An algorithm of theorem proving in logical calculi. In: Theory of Automata, GIC, AS of UkrSSR, Kiev, pp. 3–26 (1969) (in Russian)Google Scholar
  9. 9.
    Glushkov, V.M.: Some problems in the theory of automata and artificial intelligence. Cybernetics and System Analysis 6(2), 17–27 (1970)CrossRefGoogle Scholar
  10. 10.
    Glushkov, V.M., Kostyrko, V.F., Letichevskii, A.A., Anufriyev, F.V., Asel’derov, Z.M.: On a language for the writing of formal theories. In: Theoretical Cybernetics, GIC, AS of UkrSSR, Kiev, vol. 3, pp. 4–31 (1970) (in Russian)Google Scholar
  11. 11.
    Glushkov, V.M., Bodnarchuk, V.G., Grinchenko, T.A., Dorodnitsyna, A.A., Klimenko, V.P., Letichevskii, A.A., Pogrebinskii, S.B., Stognii, A.A., Fishman, Y.S.: ANALITIK algorithmic language for the description of computing processes using analytical transformations. Cybernetics and Systems Analysis 7(3), 513–552 (1971)Google Scholar
  12. 12.
    Anufriev, F.V., Asel’derov, Z.M.: The obviousness algorithm. Cybernetics and System Analysis 8(5), 740–768 (1972)CrossRefGoogle Scholar
  13. 13.
    Anufriyev, F.V., Kostiakov, V.M., Malashonok, A.I.: Algorithm and computer experiment for seeking proofs of theorems in the predicate calculus. Cybernetics and System Analysis 8(5), 777–783 (1972)CrossRefGoogle Scholar
  14. 14.
    Glushkov, V.M., Kapitonova, Y.V.: Automatic search for proofs of mathematical theorems and intelligent computers. Cybernetics and System Analysis 8(5), 709–713 (1972)CrossRefGoogle Scholar
  15. 15.
    Glushkov, V.M., Kapitonova, Y.V., Letichevskii, A.A., Vershinin, K.P., Malevanyi, N.P.: Construction of a practical formal language for mathematical theories. Cybernetics and System Analysis 8(5), 730–739 (1972)CrossRefGoogle Scholar
  16. 16.
    Kapitonova, Y.V., Kostyrko, V.F., Lyaletski, A.V., Degtyarev, A.I., Malashonok, A.I., Anufriev, F.V., Asel’derov, Z.M.: A brief review and bibliography of investigations into automation of search of theorem proofs in formal theories. Cybernetics and System Analysis 8(5), 714–729 (1972)CrossRefGoogle Scholar
  17. 17.
    Degtyarev, A.I.: Question of constructing a problem-oriented procedure for the proof of theorems. Cybernetics and System Analysis 9(4), 628–629 (1973)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kapitonova, Y.V., Degtyarev, A.I., Lyaletski, A.V.: Use of heuristic procedures in search programs for proofs of theorems (survey). Cybernetics and System Analysis 9(4), 630–641 (1973)CrossRefGoogle Scholar
  19. 19.
    Vershinin, K.P.: Relationship between formal language of mathematical theories and axiomatic systems of the theory of sets. Cybernetics and System Analysis 9(4), 621–627 (1973)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Glushkov, V.M., Vershinin, K.P., Kapitonova, Y.V., Letichevsky, A.A., Malevanyi, N.P., Kostyrko, V.F.: On a formal language for representation of mathematical texts. search of theorem proofs in formal theories. Cybernetics and System Analysis 14(5), 755–757 (1974)Google Scholar
  21. 21.
    Degtyarev, A.I.: On heuristic procedure for proving theorems from vector spaces. In: Computer-aided Theorem Proving in Mathematics, GIC, AS of UkrSSR, Kiev, pp. 95–99 (1974) (in Russian)Google Scholar
  22. 22.
    Malashonok, A.I.: The soundness and completeness of the obviousness algorithm. In: Computer-aided Theorem Proving in Mathematics, GIC, AS of UkrSSR, Kiev, pp. 75–95 (1974) (in Russian)Google Scholar
  23. 23.
    Degtyarev, A.I.: On the use of axioms of functional reflexivity in P&R refutation procedure. Preprint 75-28, GIC, AS of UkrSSR, Kiev (1975) (in Russian)Google Scholar
  24. 24.
    Lyaletski, A.V.: On a calculus of c-clauses. In: Mathematical Issues of Intelligent Machines Theory, GIC, Kiev, pp. 34–48 (1975) (in Russian)Google Scholar
  25. 25.
    Lyaletski, A.V., Malashonok, A.I.: A calculus of c-clauses based on the clash-resolution rule. In: Mathematical Issues of Intelligent Machines Theory, GIC, AS of UkrSSR, Kiev, pp. 3–33 (1975) (in Russian)Google Scholar
  26. 26.
    Vershinin, K.P.: On the notion of the correctness of a TL-text. In: Mathematical Issues of Intelligent Machines Theory, GIC, AS of UkrSSR, Kiev, pp. 61–70 (1975) (in Russian)Google Scholar
  27. 27.
    Lyaletski, A.V.: On minimal inferences in calculi of c-clauses. Issues of Robot Theory and of Artificial Intelligence, GIC, AS of UkrSSR, Kiev, pp. 34–48 (1975) (in Russian)Google Scholar
  28. 28.
    Atayan, V.V., Vershinin, K.P., Zhezherun, A.P.: Structural processing of mathematical texts. Pattern Recognition, GIC, AS of UkrSSR, Kiev, pp. 43–54 (1978) (in Russian)Google Scholar
  29. 29.
    Zhezherun, A.P.: Implementation of dynamic syntax tools for mathematical text processing systems. In: Abstracts of the All-union Symposium on Artificial Intelligence and Automatization of Mathematical Research, GIC, AS of UkrSSR, Kiev (1978) (in Russian)Google Scholar
  30. 30.
    Degtyarev, A.I.: A monotonic paramodulation strategy. In: Abstracts of the Vth All-union Conference on Mathematical Logic, Novosibirsk, USSR, p. 39 (1979) (in Russian)Google Scholar
  31. 31.
    Degtyarev, A.I.: A strict paramodulation strategy. In: Semiotics and Informatics, vol. 12, pp. 20–22. All-union Institute of Scientific and Technical Information, Moscow (1979) (in Russian)Google Scholar
  32. 32.
    Kapitonova, Y.V., Vershinin, K.P., Degtyarev, A.I., Zhezherun, A.P., Lyaletski, A.V.: System for processing mathematical texts. Cybernetics and System Analysis 15(2), 209–210 (1979)Google Scholar
  33. 33.
    Lyaletski, A.: On a variant of Herbrand theorem. In: Abstracts of the Vth All-union Conference on Mathematical Logic, Novosibirsk, USSR, p. 87 (1979) (in Russian)Google Scholar
  34. 34.
    Lyaletski, A.: On a procedure of refutation search. In: Semiotics and Informatics, vol. 12, pp. 29–32. All-union Institute of Scientific and Technical Information, Moscow (1979) (in Russian)Google Scholar
  35. 35.
    Lyaletski, A.: On the issue of the construction of refutation procedures for which preliminary skolemization is not obligatory. In: Computer-aided Mathematical Texts Processing and Issues of Robot Construction, GIC, AS of UkrSSR, Kiev, pp. 28–35 (1979) (in Russian)Google Scholar
  36. 36.
    Morokhovets, M.K.: On the implementation of logical inference procedures in the framework of a mathematical texts processing system. In: Computer-aided Mathematical Texts Processing and Issues of Robot Construction, GIC, AS of UkrSSR, Kiev, pp. 36–41 (1979) (in Russian)Google Scholar
  37. 37.
    Vershinin, K.P.: Application of auxiliary propositions in inference search. In: Semiotics and Informatics, vol. 12, pp. 3–7. All-union Institute of Scientific and Technical Information, Moscow (1979) (in Russian)Google Scholar
  38. 38.
    Vershinin, K.P.: Refutation search and “natural” proofs. In: Computer-aided Mathematical Texts Processing and Issues of Robot Construction, GIC, AS of UkrSSR, Kiev, pp. 12–28 (1979) (in Russian)Google Scholar
  39. 39.
    Zhezherun, A.P.: Decidability of the unification problem for second-order languages with unary functional symbols. Cybernetics and System Analysis 15(5), 120–125 (1979)MathSciNetGoogle Scholar
  40. 40.
    Vershinin, K.P., Zhezherun, A.P.: Data representation in a system for processing of mathematical texts. In: Issues of the Construction and Application of Mathematical Methods and Computers, GIC, AS of UkrSSR, Kiev, pp. 7–15 (1979) (in Russian)Google Scholar
  41. 41.
    Atayan, V.V., Vershinin, K.P.: Formalization of some deduction techniques. In: Computer-aided Processing of Mathematical Texts, GIC, AS of UkrSSR, Kiev, pp. 36–52 (1980) (in Russian)Google Scholar
  42. 42.
    Degtyarev, A.I.: Some special tools of Evidence Algorithm for equality handling. In: Computer-aided Processing of Mathematical Texts, GIC, AS of UkrSSR, Kiev, pp. 30–36 (1980) (in Russian)Google Scholar
  43. 43.
    Glushkov, V.M.: The system for automatic theorem proving (SAD) (a brief informal description). In: Computer-aided Processing of Mathematical Texts, GIC, AS of UkrSSR, Kiev, pp. 3–30 (1980) (in Russian)Google Scholar
  44. 44.
    Morokhovets, M.K.: On editing proofs. In: Computer-aided Processing of Mathematical Texts, GIC, AS of UkrSSR, Kiev, pp. 53–61 (1980) (in Russian)Google Scholar
  45. 45.
    Zhezherun, A.P.: Basic tools for data processing in an automatic theorem-proving system. In: Abstracts of the All-union Conference “Methods of Mathematical Logic in Artificial Intelligence and Systematic Programming”, Palanga, Lithuania, vol. I, p. 105 (1980) (in Russian)Google Scholar
  46. 46.
    Zhezherun, A.P.: Tools for computer-aided processing of mathematical texts. In: Abstract of candidate dissertation in Physics and Mathematics, GIC, AS of UkrSSR, Kiev (1980) (in Russian)Google Scholar
  47. 47.
    Atayan, V.V.: On some tools for the construction of an information environment in a computer-aided proving system. In: Mathematical Foundations of Artificial Intelligence Systems, GIC, AS of UkrSSR, Kiev, pp. 11–17 (1981) (in Russian)Google Scholar
  48. 48.
    Degtyarev, A.I., Lyaletski, A.V.: Logical inference in the system for automatic theorem proving, SAD. In: Mathematical Foundations of Artificial Intelligence Systems, GIC, AS of UkrSSR, Kiev, pp. 3–11 (1981) (in Russian)Google Scholar
  49. 49.
    Lyaletski, A.V.: A variant of Herbrand’s theorem for formulas in prenex form. Cybernetics and System Analysis 17(1), 125–129 (1981)CrossRefGoogle Scholar
  50. 50.
    Degtyarev, A.I.: Equality handling in proof search in theories with the complete set of reductions. In: Abstracts of the VIth All-union Conference on Mathematical Logic, Tbilisi, USSR, p. 55 (1982) (in Russian)Google Scholar
  51. 51.
    Degtyarev, A.I.: Methods and tools for equality handling in machine theorem proving. In: Abstract of candidate dissertation in Physics and Mathematics, GIC, AS of UkrSSR, Kiev, 24 p. (1982) (in Russian)Google Scholar
  52. 52.
    Lyaletski, A.V.: On a modification of Kanger’s method. In: Abstracts of the VIth All-union Conference on Mathematical Logic, pp. 98–99. Tbilisi University, Tbilisi (1982) (in Russian)Google Scholar
  53. 53.
    Lyaletski, A.V.: Methods of machine proof search in the first-order predicate calculus. In: Abstract of candidate dissertation in Physics and Mathematics, GIC, AS of UkrSSR, Kiev, 23 p. (1982) (in Russian)Google Scholar
  54. 54.
    Vershinin, K.P.: On the correctness of mathematical texts and its computer-aided verification. In: Abstract of candidate dissertation in Physics and Mathematics, GIC, AS of UkrSSR, Kiev, 20 p. (1982) (in Russian)Google Scholar
  55. 55.
    Lyaletski, A.V.: Generating sufficient statements in the SAD system. In: Abstracts of the IIIth All-union Conference “Application of Methods of Mathematical Logic”, Tallinn, USSR, pp. 65–66 (1983) (in Russian)Google Scholar
  56. 56.
    Vershinin, K.P., Morokhovets, M.K.: Strategies of the search for derivation of statements with restricted quantifiers. Cybernetics and System Analysis 19(3), 298–308 (1983)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Morokhovets, M.K.: Deduction-seeking procedures and transitive relations. Cybernetics and System Analysis 21(5), 702–708 (1985)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Degtyarev, A.I.: Equality handling methods for Horn sets. In: Methods for Algorithmization and Realization of Processes of Finding Solutions of Intelligent Problems, GIC, Kiev, pp. 19–26 (1986) (in Russian)Google Scholar
  59. 59.
    Degtyarev, A.I., Voronkov, A.A.: Equality control methods in machine theorem proving. Cybernetics and System Analysis 22(3), 298–307 (1986)MATHGoogle Scholar
  60. 60.
    Morokhovets, M.K.: Special strategies for theorem proof search in mathematics and tools for their implementation. In: Abstract of candidate dissertation in Physics and Mathematics, GIC, AS of UkrSSR, Kiev, 14 p. (1986) (in Russian)Google Scholar
  61. 61.
    Voronkov, A.A., Degtyarev, A.I.: Automatic theorem proving. I. Cybernetics and System Analysis 22(3), 290–297 (1986)MATHGoogle Scholar
  62. 62.
    Voronkov, A.A., Degtyarev, A.I.: Automatic theorem proving. II. Cybernetics and System Analysis 23(4), 547–556 (1987)MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Lyaletski, A.: Gentzen calculi and admissible substitutions. In: Actes Preliminaires du Symposium Franco-Sovietique “Informatika-91”, Grenoble, France, pp. 99–111 (October 1991)Google Scholar
  64. 64.
    Degtyarev, A.I., Kapitonova, J.V., Letichevski, A.A., Lyaletski, A.V., Morokhovets, M.K.: A brief historical sketch on Kiev school of automated theorem proving. In: Proceedings of the 2nd International THEOREMA Workshop, Linz, Austria, pp. 151–156 (1998)Google Scholar
  65. 65.
    Kapitonova, Y., Letichevsky, A., Lyaletski, A., Morokhovets, M.: The Evidence Algorithm 2000 (a project). In: Proceedings of the 1st International Conference UkrPROG 1998, Kiev, Ukraine, pp. 68–70 (1998)Google Scholar
  66. 66.
    Degtyarev, A., Lyaletski, A., Morokhovets, M.: Evidence Algorithm and sequent logical inference search. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 44–61. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  67. 67.
    Vershinin, K., Paskevich, A.: ForTheL — the language of formal theories. International Journal of Information Theories and Applications 7(3), 120–126 (2000)Google Scholar
  68. 68.
    Lyaletski, A., Paskevich, A.: Goal-driven inference search in classical propositional logic. In: Proceedings of the International Workshop STRATEGIES 2001, Siena, Italy, pp. 65–74 (June 2001)Google Scholar
  69. 69.
    Aselderov, Z., Verchinine, K., Degtyarev, A., Lyaletski, A., Paskevich, A., Pavlov, A.: Linguistic tools and deductive technique of the System for Automated Deduction. In: Implementation of Logics, the 3rd International Workshop “WIL 2002”, Tbilisi, Georgia, pp. 21–24 (October 2002)Google Scholar
  70. 70.
    Lyaletski, A., Verchinine, K., Degtyarev, A., Paskevich, A.: System for Automated Deduction (SAD): Linguistic and deductive peculiarities. In: Klopotek, M.A., Wierzchon, S.T., Michalewicz, M. (eds.) Intelligent Information Systems, the 11th International Symposium, IIS 2002. Advances in Soft Computing, pp. 413–422. Sopot, Poland. Physica-Verlag, Heidelberg (June 2002)Google Scholar
  71. 71.
    Paskevich, A.: Reasoning inside a formula. SEKI Report SR-02-06, University of Kaiserslautern (2002)Google Scholar
  72. 72.
    Verchinine, K., Degtyarev, A., Lyaletski, A., Paskevich, A.: SAD, a System for Automated Deduction: a current state. In: Kamareddine, F. (ed.) Proceedings of the Workshop on 35 Years of Automath, Edinburgh, Scotland (April 2002)Google Scholar
  73. 73.
    Lyaletski, A.: Admissible substitutions in sequent calculi. International Journal on Information Theories and Applications 10(4), 388–393 (2003)Google Scholar
  74. 74.
    Lyaletski, A.: Evidential paradigm: the logical aspect. Cybernetics and System Analysis 39(5), 659–667 (2003)CrossRefGoogle Scholar
  75. 75.
    Lyaletski, A., Verchinine, K., Paskevich, A.: On verification tools implemented in the System for Automated Deduction. In: Implementation Technology for Computational Logic Systems, the 2nd CoLogNet Workshop, ITCLS 2003, Pisa, Italy, pp. 3–14 (September 2003)Google Scholar
  76. 76.
    Lyaletski, A., Verchinine, K., Paskevich, A.: Theorem proving and proof verification in the system SAD. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 236–250. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  77. 77.
    Konev, B., Lyaletski, A.: Tableau method with free variables for intuitionistic logic. In: Klopotek, M., Wierzchon, S., Trojanowski, K. (eds.) Proceedings of the International IIS:IIPWM 2006 Conference. Intelligent Information Processing and Web Mining, Ustron, Poland, pp. 293–305. Springer, Heidelberg (June 2006)Google Scholar
  78. 78.
    Lyaletski, A.: Sequent forms of Herbrand theorem and their applications. Annals of Mathematics and Artificial Intelligence 46(1-2), 191–230 (2006)MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Lyaletski, A., Konev, B.: On Herbrand’s theorem for intuitionistic logic. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 293–305. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  80. 80.
    Lyaletski, A., Paskevich, A., Vershinin, K.: Deductive assistance in an intelligent linguistic environment. In: Proceedings of the 3th EIII Conference on Intelligent Systems (IEEE IS 2006), London, UK (September 2006)Google Scholar
  81. 81.
    Lyaletski, A., Paskevich, A., Verchinine, K.: SAD as a mathematical assistant — how should we go from here to there? Journal of Applied Logic 4(4), 560–591 (2006)MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Lyaletski Sr., A., Lyaletsky Jr., A.: Admissible substitutions and Herbrand’s theorems for classical and intuitionistic logics. In: Baaz, M., Preining, N. (eds.) Geodel Centenary 2006: Posters, Vienna, Austria. Collegium Logicum, vol. IX, pp. 41–45. Springer, Heidelberg (2006)Google Scholar
  83. 83.
    Paskevych, A.: Methodes de formalisation des connaissances et des raisonnements mathematiques: aspects appliques et theoriques. PhD thesis, Universite Paris 12 (2007) (in French)Google Scholar
  84. 84.
    Paskevich, A., Verchinine, K., Lyaletski, A., Anisimov, A.: Reasoning inside a formula and ontological correctness of a formal mathematical text. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Calculemus/MKM 2007 — Work in Progress, RISC-Linz Report Series, Hagenberg, Austria, vol. 07-06, pp. 77–91. University of Linz, Austria (2007)Google Scholar
  85. 85.
    Verchinine, K., Lyaletski, A., Paskevich, A.: System for Automated Deduction (SAD): A tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  86. 86.
    Lyaletski, A.: On some problems of efficient inference search in first-order cut-free modal sequent calculi. In: Proceedings of the 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, pp. 39–46. IEEE Inc., Los Alamitos (2008)CrossRefGoogle Scholar
  87. 87.
    Lyaletski, A.: Herbrand theorems: the classical and intuitionistic cases. In: Philosophical Logic, Poland. Studies in Logic, Grammar and Rhetoric, vol. 14(27), pp. 101–122 (2008)Google Scholar
  88. 88.
    Paskevich, A.: Connection tableaux with lazy paramodulation. Journal of Automated Reasoning 40(2-3), 179–194 (2008)MATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    Verchinine, K., Lyaletski, A., Paskevich, A., Anisimov, A.: On correctness of mathematical texts from a logical and practical point of view. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 583–598. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  90. 90.
    Lyaletski, A.: On Herbrand-like theorems for cut-free modal sequent logics. In: Proceedings of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania. IEEE Inc., Los Alamitos (2009)Google Scholar
  91. 91.
    Brand, D.: Proving theorems with the modification method. SIAM Journal of Computing 4, 412–430 (1975)MATHCrossRefMathSciNetGoogle Scholar
  92. 92.
    Davis, M.: The early history of automated deduction. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 3–15. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  93. 93.
    Lifschitz, V.: Mechanical theorem proving in the USSR: The Leningrad school. Delphic Associates, Inc. (1986)Google Scholar
  94. 94.
    Lifschitz, V.: What is the inverse method? Journal of Automated Reasoning 5(1), 1–23 (1989)MATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. on Prog. Languages and Systems 4(2), 258–282 (1982)MATHCrossRefGoogle Scholar
  96. 96.
    Maslov, S.Y.: The inverse method for establishing the deducibility in the classical predicate calculus. DAN SSSR 159(1), 17–20 (1964) (in Russian)Google Scholar
  97. 97.
    Matulis, V.A.: The first All-union symposium on the problem of machine searching the logical deduction. UMN 19(6), 239–241 (1964) (in Russian)Google Scholar
  98. 98.
    McCune, W.: Otter 3.0 reference manual and guide. Tech. Report ANL-94/6, Argonne National Laboratory, Argonne, USAGoogle Scholar
  99. 99.
  100. 100.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communications 15(2-3), 91–110 (2002)MATHGoogle Scholar
  101. 101.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. ACM 12(1), 23–41 (1965)MATHCrossRefGoogle Scholar
  102. 102.
    Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)Google Scholar
  103. 103.
    Schulz, S.: System Description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)Google Scholar
  104. 104.
    Wang, H.: Towards mechanical mathematics. IBM J. of Research and Development 4, 2–22 (1960)MATHCrossRefGoogle Scholar
  105. 105.
    Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  106. 106.
    Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, 184 p. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Lyaletski
    • 1
  • Konstantin Verchinine
    • 2
  1. 1.Faculty of CyberneticsKiev National Taras Shevchenko UniversityKievUkraine
  2. 2.Math-Info DepartmentParis 12 UniversityCreteilFrance

Personalised recommendations