Towards MKM in the Large: Modular Representation and Scalable Software Architecture

  • Michael Kohlhase
  • Florian Rabe
  • Vyacheslav Zholudev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)


MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM “in the small” is well-studied, so the real problem is to scale up to large, highly interconnected corpora: “MKM in the large”. We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases.

We present instances of both in this paper: the Mmt framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDoc version; and TNTBase, a versioned storage system for XML-based document formats. TNTBase becomes an Mmt database by instantiating it with special MKM operations for Mmt.


Module System Modular Form Mathematical Knowledge Logical Framework Structural Validation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autexier, S., Hutter, D., Mantel, H., Schairer, A.: Towards an Evolutionary Formal Software-Development Using CASL. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 73–88. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): Generic Syntax, RFC 3986, Internet Engineering Task Force (2005)Google Scholar
  3. 3.
    Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)MATHGoogle Scholar
  4. 4.
    Bourbaki, N.: Theory of Sets. In: Elements of Mathematics, Springer, Heidelberg (1968)Google Scholar
  5. 5.
    Bourbaki, N.: Algebra I. In: Elements of Mathematics, Springer, Heidelberg (1974)Google Scholar
  6. 6.
    Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004),
  7. 7.
    CoFI, The Common Framework Initiative. In: CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Curry, H., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)MATHGoogle Scholar
  9. 9.
    Dumbrava, S., Horozal, F., Sojakova, K.: A Case Study on Formalizing Algebra in a Module System. In: Rabe, F., Schürmann, C. (eds.) Workshop on Modules and Libraries for Proof Assistants. ACM International Conference Proceeding Series, vol. 429, pp. 11–18 (2009)Google Scholar
  10. 10.
    Farmer, W.: An Infrastructure for Intertheory Reasoning. In: McAllester, D. (ed.) Conference on Automated Deduction, pp. 115–131. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Farmer, W., Guttman, J., Thayer, F.: Little Theories. In: Kapur, D. (ed.) Conference on Automated Deduction, pp. 467–581 (1992)Google Scholar
  12. 12.
    Farmer, W.M.: Mathematical Knowledge Management. In: Schwartz, D.G. (ed.) Mathematical Knowledge Management, pp. 599–604. Idea Group Reference (2005)Google Scholar
  13. 13.
    Giceva, J., Lange, C., Rabe, F.: Integrating Web Services into Active Mathematical Documents. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus 2009. LNCS, vol. 5625, pp. 279–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.: Introducing OBJ. In: Goguen, J., Coleman, D., Gallimore, R. (eds.) Applications of Algebraic Specification using OBJ, Cambridge (1993)Google Scholar
  15. 15.
    Horozal, F., Rabe, F.: Representing Model Theory in a Type-Theoretical Logical Framework. In: Fourth Workshop on Logical and Semantic Frameworks, with Applications. Electronic Notes in Theoretical Computer Science, vol. 256, pp. 49–65 (2009)Google Scholar
  16. 16.
    Horozal, F., Rabe, F.: Representing Model Theory in a Type-Theoretical Logical Framework. Under review (2010),
  17. 17.
    Howard, W.: The formulas-as-types notion of construction. In: To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, London (1980)Google Scholar
  18. 18.
    Kohlhase, M., Mossakowski, T., Rabe, F.: The LATIN Project (2009),
  19. 19.
    Kohlhase, M., Müller, C., Rabe, F.: Notations for Living Mathematical Documents. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 504–519. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Kohlhase, M., Rabe, F., Sacerdoti Coen, C.: A Foundational View on Integration Problems (2010) (Submitted to CALCULEMUS)Google Scholar
  21. 21.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Naumov, P., Stehr, M., Meseguer, J.: The HOL/NuPRL proof translator - a practical approach to formal interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002)MATHGoogle Scholar
  24. 24.
    Odersky, M., Spoon, L., Venners, B.: Programming in Scala. artima (2007)Google Scholar
  25. 25.
    Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In: Kapur, D. (ed.) 11th International Conference on Automated Deduction (CADE), pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  26. 26.
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)MATHGoogle Scholar
  27. 27.
    Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Poswolsky, A., Schürmann, C.: System Description: Delphin - A Functional Programming Language for Deductive Systems. In: Abel, A., Urban, C. (eds.) International Workshop on Logical Frameworks and Metalanguages: Theory and Practice. ENTCS, pp. 135–141 (2008)Google Scholar
  29. 29.
    Rabe, F.: Representing Logics and Logic Translations. PhD thesis, Jacobs University Bremen (2008),
  30. 30.
    Rabe, F.: The MMT System (2008),
  31. 31.
    Rabe, F., Schürmann, C.: A Practical Module System for LF. In: Cheney, J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press, New York (2009)CrossRefGoogle Scholar
  32. 32.
    Sannella, D., Wirsing, M.: A Kernel Language for Algebraic Specification and Implementation. In: Karpinski, M. (ed.) Fundamentals of Computation Theory, pp. 413–427. Springer, Heidelberg (1983)Google Scholar
  33. 33.
    Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28 (1985)Google Scholar
  34. 34.
    Zholudev, V., Kohlhase, M.: TNTBase: a Versioned Storage for XML. In: Proceedings of Balisage: The Markup Conference 2009, vol. 3, Mulberry Technologies, Inc. (2009)Google Scholar
  35. 35.
    Zholudev, V., Kohlhase, M., Rabe, F.: A (insert XML Format) Database for (insert cool application). In: Proceedings of XMLPrague, (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Kohlhase
    • 1
  • Florian Rabe
    • 1
  • Vyacheslav Zholudev
    • 1
  1. 1.Computer ScienceJacobs University Bremen 

Personalised recommendations