Adapting Mathematical Domain Reasoners

  • Bastiaan Heeren
  • Johan Jeuring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)


Mathematical learning environments help students in mastering mathematical knowledge. Mature environments typically offer thousands of interactive exercises. Providing feedback to students solving interactive exercises requires domain reasoners for doing the exercise-specific calculations. Since a domain reasoner has to solve an exercise in the same way a student should solve it, the structure of domain reasoners should follow the layered structure of the mathematical domains. Furthermore, learners, teachers, and environment builders have different requirements for adapting domain reasoners, such as providing more details, disallowing or enforcing certain solutions, and combining multiple mathematical domains in a new domain. In previous work we have shown how domain reasoners for solving interactive exercises can be expressed in terms of rewrite strategies, rewrite rules, and views. This paper shows how users can adapt and configure such domain reasoners to their own needs. This is achieved by enabling users to explicitly communicate the components that are used for solving an exercise.


Canonical Form Mathematical Knowledge Quadratic Formula Computer Algebra System Intelligent Tutoring System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Admiraal, C., et al.: Getal & Ruimte. EPN, Houten, The Netherlands (2009)Google Scholar
  2. 2.
    Aspinall, D., Denney, E., Lüth, C.: Tactics for hierarchical proof. Mathematics in Computer Science 3(3), 309–330 (2010)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1997)Google Scholar
  4. 4.
    Beeson, M.J.: Design principles of MathPert: Software to support education in algebra and calculus. In: Kajler, N. (ed.) Computer-Human Interaction in Symbolic Computation, pp. 89–115. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Bradford, R., Davenport, J.H., Sangwin, C.J.: A comparison of equality in computer algebra and correctness in mathematical pedagogy. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus 2009, MKM 2009. LNCS, vol. 5625, pp. 75–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bundy, A.: The use of explicit plans to guide inductive proofs. In: CADE, pp. 111–120 (1988)Google Scholar
  7. 7.
    Cheikhrouhou, L., Sorge, V.: PDS – a three-dimensional data structure for proof plans. In: ACIDCA (2000)Google Scholar
  8. 8.
    Cohen, A., Cuypers, H., Reinaldo Barreiro, E., Sterk, H.: Interactive mathematical documents on the web. In: Algebra, Geometry and Software Systems, pp. 289–306. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Doorman, M., Drijvers, P., Boon, P., van Gisbergen, S., Gravemeijer, K.: Design and implementation of a computer supported learning environment for mathematics. In: Earli 2009 SIG20 Invited Symposium Issues in Designing and Implementing Computer Supported Inquiry Learning Environments (2009)Google Scholar
  10. 10.
    Gerdes, A., Heeren, B., Jeuring, J., Stuurman, S.: Feedback services for exercise assistants. In: Remenyi, D. (ed.) ECEL, pp. 402–410. Acad. Publ. Ltd., New York (2008)Google Scholar
  11. 11.
    Goguadze, G.: Representation for interactive exercises. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus 2009, MKM 2009. LNCS, vol. 5625, pp. 294–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Heeren, B., Jeuring, J.: Canonical forms in interactive exercise assistants. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus 2009, MKM 2009. LNCS, vol. 5625, pp. 325–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Heeren, B., Jeuring, J., Gerdes, A.: Specifying rewrite strategies for interactive exercises. Mathematics in Computer Science 3(3), 349–370 (2010)CrossRefGoogle Scholar
  14. 14.
    Melis, E., Siekmann, J.: Activemath: An intelligent tutoring system for mathematics. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 91–101. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    van Noort, T., Rodriguez Yakushev, A., Holdermans, S., Jeuring, J., Heeren, B., Magalhães, J.P.: A lightweight approach to datatype-generic rewriting. Journal of Functional Programming (to appear 2010)Google Scholar
  16. 16.
    Pahl, C.: Managing evolution and change in web-based teaching and learning environments. Computers & Education 40(2), 99–114 (2003)CrossRefGoogle Scholar
  17. 17.
    Paterson, R.: Arrows and computation. In: Gibbons, J., de Moor, O. (eds.) The Fun of Programming, pp. 201–222. Palgrave, Oxford (2003)Google Scholar
  18. 18.
    The OpenMath Society. The OpenMath Standard (2006),
  19. 19.
    Ullrich, C., Lu, T., Melis, E.: A new framework for dynamic adaptations and actions. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 67–72. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bastiaan Heeren
    • 1
  • Johan Jeuring
    • 1
    • 2
  1. 1.School of Computer ScienceOpen Universiteit NederlandHeerlenThe Netherlands
  2. 2.Department of Information and Computing SciencesUniversiteit Utrecht 

Personalised recommendations