On Duplication in Mathematical Repositories

  • Adam Grabowski
  • Christoph Schwarzweller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)


Building a repository of proof-checked mathematical knowledge is without any doubt a lot of work, and besides the actual formalization process there is also the task of maintaining the repository. Thus it seems obvious to keep a repository as small as possible, in particular each piece of mathematical knowledge should be formalized only once.

In this paper, however, we claim that it might be reasonable or even necessary to duplicate knowledge in a mathematical repository. We analyze different situations and reasons for doing so, provide a number of examples supporting our thesis and discuss some implications for building mathematical repositories.


Concrete Structure Mathematical Knowledge Restricted Version Chinese Remainder Theorem Ring Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Coq10]
    The Coq Proof Assistant,
  2. [Dav03]
    Davenport, J.H.: MKM from Book to Computer: A Case Study. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. [DeB87]
    de Bruijn, N.G.: The Mathematical Vernacular, a language for mathematics with typed sets. In: Dybjer, P., et al. (eds.) Proceedings of the Workshop on Programming Languages, Marstrand, Sweden (1987)Google Scholar
  4. [GG99]
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. [GS06]
    Grabowski, A., Schwarzweller, C.: Translating Mathematical Vernacular into Knowledge Repositories. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 49–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. [Har10]
    Harrison, J.: The HOL Light Theorem Prover,
  7. [Hur03]
    Hurd, J.: Verification of the Miller-Rabin Probabilistic Primality Test. Journal of Logic and Algebraic Programming 50(1-2), 3–21 (2003)CrossRefMathSciNetGoogle Scholar
  8. [KZ89]
    Kapur, D., Zhang, H.: An Overview of Rewrite Rule Laboratory (RRL). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 559–563. Springer, Heidelberg (1989)Google Scholar
  9. [KN04]
    Kamareddine, F., Nederpelt, R.: A Refinement of de Bruijn’s Formal Language of Mathematics. Journal of Logic, Language and Information 13(3), 287–340 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Knu97]
    Knuth, D.: The Art of Computer Programming. In: Seminumerical Algorithms, 3rd edn., vol. 2, Addison-Wesley, Reading (1997)Google Scholar
  11. [Kon97]
    Kondracki, A.: The Chinese Remainder Theorem. Formalized Mathematics 6(4), 573–577 (1997)Google Scholar
  12. [Kor09]
    Korniłowicz, A.: How to Define Terms in Mizar Effectively. Studies in Logic, Grammar and Rhetoric 18(31), 67–77 (2009)Google Scholar
  13. [Lün93]
    Lüneburg, H.: Vorlesungen über Lineare Algebra, BI Wissenschaftsverlag (1993) (in German)Google Scholar
  14. [Mén10]
    Ménissier-Morain, V.: A Proof of the Chinese Remainder Lemma,
  15. [Miz10]
    The Mizar Home Page,
  16. [NB04]
    Naumowicz, A., Byliński, C.: Improving Mizar Texts with Properties and Requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. [PSK04]
    Pollet, M., Sorge, V., Kerber, M.: Intuitive and Formal Representations: The Case of Matrices. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 317–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. [RT01]
    Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of the 1st International Conference on Mathematical Knowledge Management, Linz, Austria (2001)Google Scholar
  19. [Sch08]
    Schwarzweller, C.: Modular Integer Arithmetic. Formalized Mathematics 16(3), 247–252 (2008)CrossRefGoogle Scholar
  20. [Sch09]
    Schwarzweller, C.: The Chinese Remainder Theorem, its Proofs and its Generalizations in Mathematical Repositories. Studies in Logic, Grammar and Rhetoric 18(31), 103–119 (2009)Google Scholar
  21. [Urb06]
    Urban, J.: MoMM — Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  22. [Wie06]
    Wiedijk, F.: On the Usefulness of Formal Methods. In: Nieuwsbrief van de NVTI, pp. 14–23 (2006)Google Scholar
  23. [ZH92]
    Zhang, H., Hua, X.: Proving the Chinese Remainder Theorem by the Cover Set Induction. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 431–455. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Grabowski
    • 1
  • Christoph Schwarzweller
    • 2
  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland
  2. 2.Department of Computer ScienceUniversity of GdańskGdańskPoland

Personalised recommendations