Smart Matching

  • Andrea Asperti
  • Enrico Tassi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)


One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behaviour in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.


Unit Clause Proof Term Interactive Theorem Prover Congruence Closure Equational Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrendt, W., Beckert, B., Hähnle, R., Menzel, W., Reif, W., Schellhorn, G., Schmitt, P.H.: Integrating automated and interactive theorem proving. In: Automated Deduction — A Basis for Applications. Systems and Implementation Techniques of Applied Logic Series, vol. II(9), pp. 97–116. Kluwer, Dordrecht (1998)Google Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: Uniform derivation of decision procedures by superposition. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 513–527. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: Hints in unification. In: Urban, C. (ed.) TPHOLs 2009. LNCS, vol. 5674, pp. 84–98. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: A compact kernel for the Calculus of Inductive Constructions. Sadhana 34(1), 71–144 (2009)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the Matita proof assistant. Journal of Automated Reasoning 39(2), 109–139 (2007)MATHCrossRefGoogle Scholar
  6. 6.
    Asperti, A., Tassi, E.: Higher order proof reconstruction from paramodulation-based refutations: The unit equality case. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 146–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bezem, M., Hendriks, D., de Nivelle, H.: Automated proof construction in type theory using resolution. J. Autom. Reasoning 29(3-4), 253–275 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    The Coq proof-assistant (2009),
  10. 10.
    Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Handbook of Automated Reasoning, pp. 611–706. Elsevier and MIT Press (2001)Google Scholar
  11. 11.
    Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301 (1982)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dershowitz, N., Hsiang, J., Josephson, N.A., Plaisted, D.A.: Associative-commutative rewriting. In: IJCAI, pp. 940–944 (1983)Google Scholar
  13. 13.
    Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Fast term indexing with coded context trees. J. Autom. Reasoning 32(2), 103–120 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Graf, P.: Substitution tree indexing. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 117–131. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Hurd, J.: Integrating gandalf and hol. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–322. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. Technical Report NASA/CP-2003-212448, Nasa technical reports (2003)Google Scholar
  17. 17.
    Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational problems in Abstract Algebra, pp. 263–297 (1970)Google Scholar
  18. 18.
    McCune, W.: Experiments with discrimination tree indexing and path indexing for term retrieval. Journal of Automated Reasoning 9(2), 147–167 (1992)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning 40(1), 35–60 (2008)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First prototype. Inf. Comput. 204(10), 1575–1596 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27(2), 356–364 (1980)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based thorem proving. In: Handbook of Automated Reasoning, pp. 443–471. Elsevier/MIT Press (2001)Google Scholar
  23. 23.
    Paulson, L.C.: A generic tableau prover and its integration with isabelle. J. UCS 5(3), 73–87 (1999)MATHMathSciNetGoogle Scholar
  24. 24.
    Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communications 15(2-3), 91–110 (2002)MATHGoogle Scholar
  25. 25.
    Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. J. Symb. Comput. 36(1-2), 101–115 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sacerdoti Coen, C., Tassi, E.: A constructive and formal proof of Lebesgue’s dominated convergence theorem in the interactive theorem prover Matita. Journal of Formalized Reasoning 1, 51–89 (2008)MATHMathSciNetGoogle Scholar
  27. 27.
    Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formalized Reasoning 2(1), 41–62 (2009)Google Scholar
  28. 28.
    Sutcliffe, G.: The 4th ijcar automated theorem proving system competition - casc-j4. AI Commun. 22(1), 59–72 (2009)Google Scholar
  29. 29.
    Wos, L., Robinson, G.A., Carson, D.F., Shalla, L.: The concept of demodulation in theorem proving. J. ACM 14(4), 698–709 (1967)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrea Asperti
    • 1
  • Enrico Tassi
    • 2
  1. 1.Department of Computer ScienceUniversity of Bologna 
  2. 2.Microsoft Research-INRIA Joint Center 

Personalised recommendations