A Formal Quantifier Elimination for Algebraically Closed Fields

  • Cyril Cohen
  • Assia Mahboubi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

We prove formally that the first order theory of algebraically closed fields enjoys quantifier elimination, and hence is decidable. This proof is organized in two modular parts. We first reify the first order theory of rings and prove that quantifier elimination leads to decidability. Then we implement an algorithm which constructs a quantifier free formula from any first order formula in the theory of ring. If the underlying ring is in fact an algebraically closed field, we prove that the two formulas have the same semantic. The algorithm producing the quantifier free formula is programmed in continuation passing style, which leads to both a concise program and an elegant proof of semantic correctness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barras, B.: Sets in coq, coq in sets. In: Proceedings of the 1st Coq Workshop. Technical University of Munich Research Report (2009)Google Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics. Springer, New York (2006)MATHGoogle Scholar
  3. 3.
    Berardi, S., Valentini, S.: Krivine’s intuitionistic proof of classical completeness for countable languages. Ann. Pure Appl. Logic 129(1-3), 93–106 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)MATHGoogle Scholar
  5. 5.
    Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Buchberger, B.: Groebner Bases: Applications. In: Mikhalev, A.V., Pilz, G.F. (eds.) The Concise Handbook of Algebra, pp. 265–268. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  7. 7.
    Chevalley, C., Cartan, H.: Schémas normaux; morphismes; ensembles constructibles. In: Séminaire Henri Cartan, Numdam, vol. 8, pp. 1–10 (1955-1956), http://www.numdam.org/item?id=SHC_1955-1956__8__A7_0
  8. 8.
    Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. Journal of Symbolic Computation 34(4), 271–286 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001: Supplemental Proceedings, Division of Informatics, University of Edinburgh, pp. 159–174 (2001); Published as Informatics Report Series EDI-INF-RR-0046, http://www.informatics.ed.ac.uk/publications/report/0046.html
  11. 11.
    Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  12. 12.
    Gödel, K.: Über die Vollständigkeit des Logikkalküls. PhD thesis, University of Vienna, Austria (1929)Google Scholar
  13. 13.
    Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 18–33. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    O’Connor, R.: Incompleteness & Completeness, Formalizing Logic and Analysis in Type Theory. PhD thesis, Radboud University Nijmegen, Netherlands (2009)Google Scholar
  15. 15.
    Pottier, L.: Connecting gröbner bases programs with coq to do proofs in algebra, geometry and arithmetics. In: LPAR Workshops. CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008)Google Scholar
  16. 16.
    Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 294–309. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Robinson, J.: Definability and decision problems in arithmetic. Journal of Symbolic Logic 14, 98–114 (1949)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Simpson, C.T.: Formalized proof, computation, and the construction problem in algebraic geometry (2004)Google Scholar
  19. 19.
    Tarski, A.: A decision method for elementary algebra and geometry. In: RAND Corp., Santa Monica, CA (1948) (manuscript); Republished as A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cyril Cohen
    • 1
  • Assia Mahboubi
    • 1
  1. 1.INRIA Saclay – Île-de-France, LIX École Polytechnique, INRIA Microsoft Research Joint Centre 

Personalised recommendations