Formal Proof of SCHUR Conjugate Function

  • Franck Butelle
  • Florent Hivert
  • Micaela Mayero
  • Frédéric Toumazet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

The main goal of our work is to formally prove the correctness of the key commands of the SCHUR software, an interactive program for calculating with characters of Lie groups and symmetric functions. The core of the computations relies on enumeration and manipulation of combinatorial structures. As a first “proof of concept”, we present a formal proof of the conjugate function, written in C. This function computes the conjugate of an integer partition. To formally prove this program, we use the Frama-C software. It allows us to annotate C functions and to generate proof obligations, which are proved using several automated theorem provers. In this paper, we also draw on methodology, discussing on how to formally prove this kind of program.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butelle, F., King, R., Toumazet, F.: SCHUR, an interactive program for calculating properties of Lie groups and symmetric functions, http://schur.sourceforge.net (Release 6.06)
  2. 2.
    MacDonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford University Press (1979) (2nd edn. in 1998)Google Scholar
  3. 3.
    King, R.C., Bylicki, M., Karwowski, J. (eds.): Symmetry, Spectroscopy and SCHUR. Nicolaus Copernicus University Press (2006)Google Scholar
  4. 4.
    Correnson, L., Cuoq, P., Puccetti, A., Signoles, J.: Frama-C User Manual, Beryllium release, http://frama-c.cea.fr
  5. 5.
    Marché, C., Moy, Y.: Jessie Tutorial, Release 2.21 http://frama-c.cea.fr/jessie/jessie-tutorial.pdf
  6. 6.
    Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL: ANSI/ISO C Specification Language, http://frama-c.cea.fr/download/acsl-implementation-Beryllium-20090902.pdf
  7. 7.
    Filliâtre, J.C., Marché, C., Moy, Y., Hubert, T., Rousset, N.: Why is a software verification platform, Release 2.21, http://why.lri.fr
  8. 8.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580, 583 (1969)MATHCrossRefGoogle Scholar
  9. 9.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Conchon, S., Contejean, E., Bobot, F., Lescuyer, S.: Alt-Ergo is an automatic theorem prover dedicated to program verification, Release 0.9., http://ergo.lri.fr
  11. 11.
    Microsoft Research: Z3 An Efficient SMT Solver, Release 2.4., http://research.microsoft.com/en-us/um/redmond/projects/z3
  12. 12.
    Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007), http://cs.nyu.edu/acsys/cvc3 CrossRefGoogle Scholar
  13. 13.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. In: EATCS. Texts in Theoretical Computer Science, Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS prover guide, http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
  15. 15.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.:Isabelle/HOL — A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  16. 16.
    Andrews, G.E.: The theory of partitions. Cambridge University Press, Cambridge (1984)MATHCrossRefGoogle Scholar
  17. 17.
    Jacobi, C.G.J.: De functionibus alternantibus earumque divisione per productum e differentiis elementorum conflatum. Journal für die reine und angewandte Mathematik (Crelles Journal) 22, 360–371 (1841); Reprinted in Gesammelten Werke III, G. Reimer, Berlin (1884)Google Scholar
  18. 18.
    Littlewood, D.E.: The Theory of Group Characters, 2nd edn. Oxford University Press, Oxford (1950)MATHGoogle Scholar
  19. 19.
    Lascoux, A., Pragacz, P.: S-function series. J. Phys. A: Math. Gen. 21, 4105–4118 (1988)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Newell, M.J.: On the representations of the orthogonal and symplectic groups. In: Proc. Roy. Irish Acad., Section A: Mathematical and Physical Sciences, vol. 54, pp. 143–152 (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Franck Butelle
    • 1
  • Florent Hivert
    • 2
  • Micaela Mayero
    • 1
    • 3
  • Frédéric Toumazet
    • 4
  1. 1.LIPN UMR 7030Université Paris 13Villetaneuse
  2. 2.LITIS EA 4108Université de Rouen
  3. 3.LIP, INRIA Grenoble - Rhône-AlpesUMR 5668, UCBL, ENS LyonLyon
  4. 4.LIGM UMR 8049Université de Marne-la-ValléeChamps sur Marne

Personalised recommendations