Advertisement

Some Considerations on the Usability of Interactive Provers

  • Andrea Asperti
  • Claudio Sacerdoti Coen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

In spite of the remarkable achievements recently obtained in the field of mechanization of formal reasoning, the overall usability of interactive provers does not seem to be sensibly improved since the advent of the “second generation” of systems, in the mid of the eighties. We try to analyze the reasons of such a slow progress, pointing out the main problems and suggesting some possible research directions.

Keywords

Formal Reasoning Remarkable Achievement Prime Number Theorem Formalization Cost Interactive Theorem Prover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Geuvers, H., Natarajan, R.: Social processes, program verification and all that. Mathematical Structures in Computer Science 19(5), 877–896 (2009)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Asperti, A., Ricciotti, W.: About the formalization of some results by Chebyshev in number theory. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 19–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Asperti, A., Tassi, E.: Smart matching. In: Autexier, S., et al. (eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 263–277. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. ACM Trans. Comput. Log. 9(1) (2007)Google Scholar
  5. 5.
    Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  6. 6.
    Escobar, S., Meseguer, J., Thati, P.: Narrowing and rewriting logic: from foundations to applications. Electr. Notes Theor. Comput. Sci. 177, 5–33 (2007)CrossRefGoogle Scholar
  7. 7.
    Geuvers, H.: Proof Assistants: history, ideas and future. Sadhana 34(1), 3–25 (2009)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gonthier, G.: The four colour theorem: Engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Gonthier, G.: Formal proof – the four color theorem. Notices of the American Mathematical Society 55, 1382–1394 (2008)MATHMathSciNetGoogle Scholar
  10. 10.
    Gordon, M.: From lcf to hol: a short history. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 169–186. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Gordon, M.: Twenty years of theorem proving for hols past, present and future. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 1–5. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hales, T.: Formal proof. Notices of the American Mathematical Society 55, 1370–1381 (2008)MATHMathSciNetGoogle Scholar
  13. 13.
    Hales, T.C.: The Jordan curve theorem, formally and informally. The American Mathematical Monthly 114, 882–894 (2007)MATHMathSciNetGoogle Scholar
  14. 14.
    Harrison, J.: A Short Survey of Automated Reasoning. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 334–349. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Harrison, J.: Formalizing an analytic proof of the prime number theorem. J. Autom. Reasoning 43(3), 243–261 (2009)MATHCrossRefGoogle Scholar
  16. 16.
    Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C. (eds.): Selected Papers on Automath. Studies in Logic and the Foundations of Mathematics, vol. 133. Elsevier Science, Amsterdam (1994) ISBN-0444898220MATHGoogle Scholar
  17. 17.
    Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27(2), 356–364 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based thorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 471–443. Elsevier and MIT Press (2001); ISBN-0-262-18223-8Google Scholar
  19. 19.
    Coen, C.S., Tassi, E.: A constructive and formal proof of Lebesgue’s dominated convergence theorem in the interactive theorem prover Matita. Journal of Formalized Reasoning 1, 51–89 (2008)MATHMathSciNetGoogle Scholar
  20. 20.
    van Benthem Jutting, J.: Checking Landau’s “Grundlagen” in the Automath system. Mathematical centre tracts n. 83. Mathematisch Centrum, Amsterdam (1979)Google Scholar
  21. 21.
    Wiedijk, F.: The “De Bruijn factor” (2000), http://www.cs.ru.nl/~freek/factor/
  22. 22.
    Wiedijk, F.: Estimating the cost of a standard library for a mathematical proof checker (2001), http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf
  23. 23.
    Wiedijk, F.: A new implementation of Automath. Journal of Automated Reasoning 29, 365–387 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrea Asperti
    • 1
  • Claudio Sacerdoti Coen
    • 1
  1. 1.Department of Computer ScienceUniversity of Bologna 

Personalised recommendations