How to Correctly Prune Tropical Trees

  • Jean-Vincent Loddo
  • Luca Saiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6167)

Abstract

We present tropical games, a generalization of combinatorial min-max games based on tropical algebras. Our model breaks the traditional symmetry of rational zero-sum games where players have exactly opposed goals (min vs. max), is more widely applicable than min-max and also supports a form of pruning, despite it being less effective than α − β. Actually, min-max games may be seen as particular cases where both the game and its dual are tropical: when the dual of a tropical game is also tropical, the power of α − β is completely recovered. We formally develop the model and prove that the tropical pruning strategy is correct, then conclude by showing how the problem of approximated parsing can be modeled as a tropical game, profiting from pruning.

Keywords

combinatorial game search alpha-beta pruning rational game tropical algebra tropical game term rewriting logic parsing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hart, T.P., Edwards, D.J.: The tree prune (TP) algorithm. In: Artificial Intelligence Project Memo 30. Massachusetts Institute of Technology, Cambridge (1961)Google Scholar
  2. 2.
    Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artificial Intelligence 6, 293–326 (1975)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Loddo, J.V.: Généralisation des Jeux Combinatoires et Applications aux Langages Logiques. PhD thesis, Université Paris VII (2002)Google Scholar
  4. 4.
    Loddo, J.V., Cosmo, R.D.: Playing logic programs with the alpha-beta algorithm. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 207–224. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Ginsberg, M.L., Jaffray, A.: Alpha-beta pruning under partial orders. In: Games of No Chance II (2001)Google Scholar
  6. 6.
    Klop, J.W., de Vrijer, R.: First-order term rewriting systems. In: Terese (ed.) Term Rewriting Systems, pp. 24–59. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. J. ACM 27(4), 797–821 (1980)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Klop, J.W., Oostrom, V.V., de Vrijer, R.: Orthogonality. In: Terese (ed.) Term Rewriting Systems, pp. 88–148. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean-Vincent Loddo
    • 1
  • Luca Saiu
    • 1
  1. 1.Laboratoire d’Informatique de l’Université Paris Nord - UMR 7030 Université Paris 13 - CNRSVilletaneuse

Personalised recommendations