Advertisement

Assembly of 3D Reconfigurable Hybrid MOEMS through Microrobotic Approach

  • Kanty Rabenorosoa
  • Sylwester Bargiel
  • Cédric Clécy
  • Philippe Lutz
  • Christophe Gorecki

Abstract

Micro-assembly has been identified to be a critical technology in the microsystems technology and nanotechnology. Increasing needs of MOEMS (Micro-Opto-Electro- Mechanical Systems) for microsystems conducts to development of new concepts and skilled micro-assembly stations. This paper presents a 3D micro-assembly station used for the reconfigurable free space micro-optical benches (RFS-MOB) which are a promising type of MOEMS. Designed parts of RFS-MOB are assembled by using the developed micro-assembly station. The flexibility of the micro-assembly station provides the possibility to manipulate a variety of micro-components. The RFS-MOB design enables to reduce adhesion forces effects during releasing operations. Experimental results are shown and validate the effectiveness of the micro-assembly station and micro-assembly strategies.

Keywords

Assembly Sequence Optical Component Microfabrication Process International Design Engineer Technical Conference Ball Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiel, S., Rabenorosoa, K., Clévy, C., Gorecki, C., Lutz, P.: Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench. J. Micromech. Microeng. (in press)Google Scholar
  2. 2.
    Clévy, C., Hubert, A., Chaillet, N.: Flexible micro-assembly system equiped with an automated tool changer. Journal of micro-nano mechatronics (2008), doi:10.1007/s12213-008-0012-zGoogle Scholar
  3. 3.
    Das, A., Zhang, P., Lee, W.H., Stephanou, H., Popa, D.: m3: Multiscale, deterministic micro-nano assembly system for construction of on-wafer microrobots. In: IEEE International Conference on Robotics and Automation, pp. 461–466 (2007)Google Scholar
  4. 4.
    Dechev, N., Cleghorn, W., Mills, J.: Microassembly of 3-d microstructures using a compliant, passive microgripper. Journal of Microelectromechanical Systems (2004), doi:10.1109/JMEMS.2004.825311Google Scholar
  5. 5.
    Descour, M.R., Karkkainen, A.H.O., Rogers, J.D., Liang, C.: Toward the development of miniaturized imaging systems for detection of pre-cancer. IEEE Journal of Quatum Electronics (2002), doi:10.1109/3.980264Google Scholar
  6. 6.
    Gauthier, M., Régnier, S., Rougeot, P., Chaillet, N.: Analysis of forces for micromanipulations in dry and liquid media. Journal of Micromechatronics (2006), doi:10.1163/156856306777924699Google Scholar
  7. 7.
    Hériban, D., Gauthier, M.: Robotic micro-assembly of microparts using a piezogripper. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4042–4047 (2008)Google Scholar
  8. 8.
    Hériban, D., Agnus, J., Petrini, V., Gauthier, M.: A mechanical de-tethering technique for silicon mems etched with a drie process. J. Micromech. Microeng. 19 (2009), doi:10.1088/0960-1317/19/5/055011Google Scholar
  9. 9.
    Kim, B., Kang, H., Kim, D.H., Park, J.O.: A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components. The International Journal of Advanced Manufacturing Technology 28, 379–386 (2005)CrossRefGoogle Scholar
  10. 10.
    Motamedi, M.E., Wu, M.C., Pister, K.S.J.: Micro-opto-electro-mechanical devices and on-chip optical processing. Optical Engineering (1997), doi:10.1117/1.601356Google Scholar
  11. 11.
    Nolan, M., Labs, Z.: Apparatus and methods of manufacturing and assembling microscale and nanoscale components and assemblies (2008)Google Scholar
  12. 12.
    Perez, R., Agnus, J., Clévy, C., Hubert, A., Chaillet, N.: Modelling, fabrication and validation of a high performance 2 dof microgripper. ASME/IEEE Transaction on Mechatronics 10(2), 161–171 (2005), doi:10.1109/TMECH.2005.844712CrossRefGoogle Scholar
  13. 13.
    Rabenorosoa, K., Clévy, C., Lutz, P., Gauthier, M., Rougeot, P.: Measurement setup of pull-off force for planar contact at the microscale. Micro Nano Letters 4, 148–154 (2009a), doi:10.1049/mnl.2009.0034CrossRefGoogle Scholar
  14. 14.
    Rabenorosoa, K., Das, A.N., Murthy, R., Clévy, C., Popa, D., Lutz, P.: Precise motion control of a piezoelectric microgripper for microspectrometer assembly. In: ASME 2009 International Design Engineering Technical Conferences (IDETC 2009) & Computers and Information in Engineering Conference (CIE 2009), San Diego, United States (2009b)Google Scholar
  15. 15.
    Rathmann, S., Raatz, A., Hesselbach, J.: Concepts for Hybrid Micro Assembly Using Hot Melt Joining. Springer, Boston (2008), doi:10.1007/978-0-387-77405-3Google Scholar
  16. 16.
    Tolfree, D., Jackson, M.J.: Commercializing Micro-Nanotechnology Products. CRC Press, Boca Raton (2006)Google Scholar
  17. 17.
    Wu, M.C., Lin, L.Y., Lee, S.S., Pister, K.S.J.: Micromachined free-space integrated micro-optics. Sensors and actuators 50, 127–134 (1995), doi:10.1016/0924-4247(96)80096-3CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kanty Rabenorosoa
    • 1
  • Sylwester Bargiel
    • 2
  • Cédric Clécy
    • 1
  • Philippe Lutz
    • 1
  • Christophe Gorecki
    • 2
  1. 1.Automatic Control and Micro-Mechatronic Systems depart.(AS2M department)FEMTO-st Inst., UMRS CNRS 6174 - UFC/ENSMM/CNRSBesanconFrance
  2. 2.Micro Nano Sciences, and Systems depart. (MN2S department)FEMTO-st Inst., UMRS CNRS 6174 - UFC/ENSMM/CNRSBesanconFrance

Personalised recommendations